通过无偏置电信兼容光导纳米天线在5太赫兹辐射带宽上产生太赫兹

D. Turan, N. Yardimci, P. Lu, M. Jarrahi
{"title":"通过无偏置电信兼容光导纳米天线在5太赫兹辐射带宽上产生太赫兹","authors":"D. Turan, N. Yardimci, P. Lu, M. Jarrahi","doi":"10.1109/IMS30576.2020.9224081","DOIUrl":null,"url":null,"abstract":"We demonstrate a broadband and highly reliable photoconductive terahertz emitter based on plasmonic nanoantennas that operates at telecommunication optical wavelengths (~1550 nm) at which low-cost and compact lasers are commercially available. The photoconductive substrate is specifically grown to induce a built-in electric field at the interface between the nanoantennas and photoconductive substrate. This built-in electric field drifts the photocarriers generated by the optical pump beam and produces the terahertz feed current to the nanoantennas while eliminating the need for an external bias voltage. The bias-free operation suppresses the dark current that is detrimental to the photoconductive emitters that operate at telecommunication optical wavelengths. Despite their great promise, the bandwidth of previously demonstrated bias-free photoconductive terahertz emitters has been limited by the limited extent of the built-in electric field in the photoconductive substrate. Here we present a telecommunication-compatible, bias-free photoconductive terahertz emitter that offers more than a 5 THz radiation bandwidth and a 100 dB dynamic range.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"16 1","pages":"87-90"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Terahertz Generation through Bias-free Telecommunication Compatible Photoconductive Nanoantennas over a 5 THz Radiation Bandwidth\",\"authors\":\"D. Turan, N. Yardimci, P. Lu, M. Jarrahi\",\"doi\":\"10.1109/IMS30576.2020.9224081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a broadband and highly reliable photoconductive terahertz emitter based on plasmonic nanoantennas that operates at telecommunication optical wavelengths (~1550 nm) at which low-cost and compact lasers are commercially available. The photoconductive substrate is specifically grown to induce a built-in electric field at the interface between the nanoantennas and photoconductive substrate. This built-in electric field drifts the photocarriers generated by the optical pump beam and produces the terahertz feed current to the nanoantennas while eliminating the need for an external bias voltage. The bias-free operation suppresses the dark current that is detrimental to the photoconductive emitters that operate at telecommunication optical wavelengths. Despite their great promise, the bandwidth of previously demonstrated bias-free photoconductive terahertz emitters has been limited by the limited extent of the built-in electric field in the photoconductive substrate. Here we present a telecommunication-compatible, bias-free photoconductive terahertz emitter that offers more than a 5 THz radiation bandwidth and a 100 dB dynamic range.\",\"PeriodicalId\":6784,\"journal\":{\"name\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"volume\":\"16 1\",\"pages\":\"87-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMS30576.2020.9224081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMS30576.2020.9224081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们展示了一种基于等离子体纳米天线的宽带和高度可靠的光导太赫兹发射器,该发射器工作在电信光学波长(~1550 nm),这种波长的低成本和紧凑的激光器在商业上可用。光导衬底的生长是为了在纳米天线和光导衬底之间的界面处产生一个内置电场。这个内置的电场使光泵光束产生的光载流子漂移,并产生太赫兹馈入电流给纳米天线,同时消除了对外部偏置电压的需要。无偏置操作抑制了对在电信光学波长处工作的光导发射器有害的暗电流。尽管具有巨大的前景,但先前演示的无偏置光导太赫兹发射器的带宽受到光导衬底内建电场的有限范围的限制。在这里,我们提出了一种电信兼容,无偏置光导太赫兹发射器,提供超过5太赫兹辐射带宽和100 dB动态范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Terahertz Generation through Bias-free Telecommunication Compatible Photoconductive Nanoantennas over a 5 THz Radiation Bandwidth
We demonstrate a broadband and highly reliable photoconductive terahertz emitter based on plasmonic nanoantennas that operates at telecommunication optical wavelengths (~1550 nm) at which low-cost and compact lasers are commercially available. The photoconductive substrate is specifically grown to induce a built-in electric field at the interface between the nanoantennas and photoconductive substrate. This built-in electric field drifts the photocarriers generated by the optical pump beam and produces the terahertz feed current to the nanoantennas while eliminating the need for an external bias voltage. The bias-free operation suppresses the dark current that is detrimental to the photoconductive emitters that operate at telecommunication optical wavelengths. Despite their great promise, the bandwidth of previously demonstrated bias-free photoconductive terahertz emitters has been limited by the limited extent of the built-in electric field in the photoconductive substrate. Here we present a telecommunication-compatible, bias-free photoconductive terahertz emitter that offers more than a 5 THz radiation bandwidth and a 100 dB dynamic range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信