{"title":"进化过程中酶动力学的神秘守恒","authors":"Amnon Kohen","doi":"10.1016/j.pisc.2016.03.023","DOIUrl":null,"url":null,"abstract":"<div><p>Examination of the chemical step catalysed by dihydrofolate reductase (DHFR) suggested preservation of an “ideal” transition state as the enzyme evolves from bacteria to human. This observation is enigmatic: since evolutionary pressure is most effective on enzymes’ second order rate constant (<em>k</em><sub>cat</sub>/<em>K</em><sub>M</sub>) and since the chemistry is not rate limiting on that kinetic parameter, why is the nature of the chemical step preserved? Studies addressing this question were presented in the 2015 Beilstein ESCEC Symposium and are summarized below.</p></div>","PeriodicalId":92112,"journal":{"name":"Perspectives in science","volume":"9 ","pages":"Pages 60-66"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pisc.2016.03.023","citationCount":"2","resultStr":"{\"title\":\"The enigmatic conservation of enzyme dynamics in evolution\",\"authors\":\"Amnon Kohen\",\"doi\":\"10.1016/j.pisc.2016.03.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Examination of the chemical step catalysed by dihydrofolate reductase (DHFR) suggested preservation of an “ideal” transition state as the enzyme evolves from bacteria to human. This observation is enigmatic: since evolutionary pressure is most effective on enzymes’ second order rate constant (<em>k</em><sub>cat</sub>/<em>K</em><sub>M</sub>) and since the chemistry is not rate limiting on that kinetic parameter, why is the nature of the chemical step preserved? Studies addressing this question were presented in the 2015 Beilstein ESCEC Symposium and are summarized below.</p></div>\",\"PeriodicalId\":92112,\"journal\":{\"name\":\"Perspectives in science\",\"volume\":\"9 \",\"pages\":\"Pages 60-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pisc.2016.03.023\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspectives in science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213020916302294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213020916302294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The enigmatic conservation of enzyme dynamics in evolution
Examination of the chemical step catalysed by dihydrofolate reductase (DHFR) suggested preservation of an “ideal” transition state as the enzyme evolves from bacteria to human. This observation is enigmatic: since evolutionary pressure is most effective on enzymes’ second order rate constant (kcat/KM) and since the chemistry is not rate limiting on that kinetic parameter, why is the nature of the chemical step preserved? Studies addressing this question were presented in the 2015 Beilstein ESCEC Symposium and are summarized below.