{"title":"非定常过渡下萨马拉型减速器的稳定性判据","authors":"H.-C. Wang, R. Breidenthal","doi":"10.1017/aer.2022.95","DOIUrl":null,"url":null,"abstract":"The physics behind the transitions of natural Samaras, or the bio-inspired counterparts, to steady autorotation has been unclear. Theoretical and experimental investigations explore the inertial and aerodynamic characteristics required to guarantee stable transitions of an artificial Samara-like decelerator from chaotic tumbling motions to azimuthal autorotation. A non-dimensional inertial criterion is proposed, which is in accord with experiments.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability criteria of Samara-like decelerator in unsteady transitions\",\"authors\":\"H.-C. Wang, R. Breidenthal\",\"doi\":\"10.1017/aer.2022.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physics behind the transitions of natural Samaras, or the bio-inspired counterparts, to steady autorotation has been unclear. Theoretical and experimental investigations explore the inertial and aerodynamic characteristics required to guarantee stable transitions of an artificial Samara-like decelerator from chaotic tumbling motions to azimuthal autorotation. A non-dimensional inertial criterion is proposed, which is in accord with experiments.\",\"PeriodicalId\":22567,\"journal\":{\"name\":\"The Aeronautical Journal (1968)\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal (1968)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2022.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2022.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability criteria of Samara-like decelerator in unsteady transitions
The physics behind the transitions of natural Samaras, or the bio-inspired counterparts, to steady autorotation has been unclear. Theoretical and experimental investigations explore the inertial and aerodynamic characteristics required to guarantee stable transitions of an artificial Samara-like decelerator from chaotic tumbling motions to azimuthal autorotation. A non-dimensional inertial criterion is proposed, which is in accord with experiments.