通过正确的功能家族产生n美元-准组

IF 0.2 Q4 MATHEMATICS, APPLIED
А.В. Галатенко, Alexei Vladimirovich Galatenko, В. А. Носов, Valentin Aleksandrovich Nosov, А.Е. Панкратьев, A. E. Pankratiev, Кирилл Денисович Царегородцев, Kirill Denisovich Tsaregorodtsev
{"title":"通过正确的功能家族产生n美元-准组","authors":"А.В. Галатенко, Alexei Vladimirovich Galatenko, В. А. Носов, Valentin Aleksandrovich Nosov, А.Е. Панкратьев, A. E. Pankratiev, Кирилл Денисович Царегородцев, Kirill Denisovich Tsaregorodtsev","doi":"10.4213/dm1749","DOIUrl":null,"url":null,"abstract":"Конечные квазигруппы и $n$-квазигруппы являются перспективной платформой для реализации криптоалгоритмов. Одна из актуальных задач заключается в эффективном по памяти порождении широких классов $n$-квазигрупп большого порядка. В работе предлагается возможный подход к решению этой задачи, основанный на правильных семействах функций, показано, что число порождаемых $n$-квазигрупп оценивается снизу функцией от мощности образа соответствующего правильного семейства, исследуются возможные значения мощности образа, и приведены два примера квадратичных правильных семейств булевых функций с большой мощностью образа.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"133 2 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"О порождении $n$-квазигрупп с помощью правильных семейств функций\",\"authors\":\"А.В. Галатенко, Alexei Vladimirovich Galatenko, В. А. Носов, Valentin Aleksandrovich Nosov, А.Е. Панкратьев, A. E. Pankratiev, Кирилл Денисович Царегородцев, Kirill Denisovich Tsaregorodtsev\",\"doi\":\"10.4213/dm1749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Конечные квазигруппы и $n$-квазигруппы являются перспективной платформой для реализации криптоалгоритмов. Одна из актуальных задач заключается в эффективном по памяти порождении широких классов $n$-квазигрупп большого порядка. В работе предлагается возможный подход к решению этой задачи, основанный на правильных семействах функций, показано, что число порождаемых $n$-квазигрупп оценивается снизу функцией от мощности образа соответствующего правильного семейства, исследуются возможные значения мощности образа, и приведены два примера квадратичных правильных семейств булевых функций с большой мощностью образа.\",\"PeriodicalId\":42607,\"journal\":{\"name\":\"Prikladnaya Diskretnaya Matematika\",\"volume\":\"133 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaya Diskretnaya Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/dm1749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/dm1749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

有限准组和n美元准组是实现加密算法的可行平台。一个紧迫的挑战是,从记忆中产生广泛的n美元-高阶准群体是有效的。工作提出了一种可能的方法来解决这个问题,基于正确的函数家族,表明n美元-准组的数量是由一个特定家庭的图像能力来衡量的,研究了图像能力的可能值,并提供了两个具有高图像强度的方形正确家族的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
О порождении $n$-квазигрупп с помощью правильных семейств функций
Конечные квазигруппы и $n$-квазигруппы являются перспективной платформой для реализации криптоалгоритмов. Одна из актуальных задач заключается в эффективном по памяти порождении широких классов $n$-квазигрупп большого порядка. В работе предлагается возможный подход к решению этой задачи, основанный на правильных семействах функций, показано, что число порождаемых $n$-квазигрупп оценивается снизу функцией от мощности образа соответствующего правильного семейства, исследуются возможные значения мощности образа, и приведены два примера квадратичных правильных семейств булевых функций с большой мощностью образа.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Prikladnaya Diskretnaya Matematika
Prikladnaya Diskretnaya Matematika MATHEMATICS, APPLIED-
CiteScore
0.60
自引率
50.00%
发文量
0
期刊介绍: The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信