高频超声对微滤膜上污垢沉积分布的评价

Yi-Hsun Lin, Shyh-Hau Wang, Chih-Chung Huang, Hao-Chuan Pai, K. Tung
{"title":"高频超声对微滤膜上污垢沉积分布的评价","authors":"Yi-Hsun Lin, Shyh-Hau Wang, Chih-Chung Huang, Hao-Chuan Pai, K. Tung","doi":"10.1109/ULTSYM.2010.5935712","DOIUrl":null,"url":null,"abstract":"Distribution of fouling may largely affect flux of the microfiltration membrane, in which its formation is related to several factors such as operating pressure, flow rate, concentration/composition of feed solution, and membrane material. It therefore is essential to evaluate fouling distribution on microfiltration membranes before they will be further applied. In this study, an attempt was explored to develop methods and techniques for measuring the fouling distribution using a 35 MHz high frequency ultrasound system. The experiments were carried out from a waste water treatment system that is composed of polyvinylidene fluoride (PVDF) membrane with nominal pore size of 0.22 μm and feed solutions with the humic acid solution of 4 ppm. The operating pressure and flow rate were respectively maintained at 1 bar and 0.22 L/min. Areas of those filtration membranes after 5, 15, 30, 60, and 100 minutes filtration durations were raster scanned by the high frequency ultrasound system. The peak-to-peak voltage (Vpp) of ultrasonic signals reflected from the surface of membrane was calculated for the reconstruction of C-scan images. The average Vpp and flux of filtrate were found to decrease exponentially with the increase of filtration duration. In accordance with the flux of filtrate approached to saturate, the variation of average Vpp tended to be nearly minimum. It can be readily observed for the changes of average Vpp that decreased from 3.02±0.05 V at the beginning of filtration to 1.73±0.25 V at 100 min duration after filtration with the humic acid solution of 4 ppm. Moreover, the fouling of the humic acid on the membrane was not homogeneously distributed. The acoustic impedance mismatch between the fouling of humic acid and PVDF membrane led the amplitude of ultrasonic signals reflected from the membrane surface to decrease with the increase of fouling deposition. C-scan results indicated that fouling deposition is a both temporal- and spatial-dependent process and that may be feasible to be sensitively and rapidly evaluated by high frequency ultrasound image incorporated with the analysis method.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation for the distribution of fouling deposition on the microfiltration membrane using high frequency ultrasound\",\"authors\":\"Yi-Hsun Lin, Shyh-Hau Wang, Chih-Chung Huang, Hao-Chuan Pai, K. Tung\",\"doi\":\"10.1109/ULTSYM.2010.5935712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distribution of fouling may largely affect flux of the microfiltration membrane, in which its formation is related to several factors such as operating pressure, flow rate, concentration/composition of feed solution, and membrane material. It therefore is essential to evaluate fouling distribution on microfiltration membranes before they will be further applied. In this study, an attempt was explored to develop methods and techniques for measuring the fouling distribution using a 35 MHz high frequency ultrasound system. The experiments were carried out from a waste water treatment system that is composed of polyvinylidene fluoride (PVDF) membrane with nominal pore size of 0.22 μm and feed solutions with the humic acid solution of 4 ppm. The operating pressure and flow rate were respectively maintained at 1 bar and 0.22 L/min. Areas of those filtration membranes after 5, 15, 30, 60, and 100 minutes filtration durations were raster scanned by the high frequency ultrasound system. The peak-to-peak voltage (Vpp) of ultrasonic signals reflected from the surface of membrane was calculated for the reconstruction of C-scan images. The average Vpp and flux of filtrate were found to decrease exponentially with the increase of filtration duration. In accordance with the flux of filtrate approached to saturate, the variation of average Vpp tended to be nearly minimum. It can be readily observed for the changes of average Vpp that decreased from 3.02±0.05 V at the beginning of filtration to 1.73±0.25 V at 100 min duration after filtration with the humic acid solution of 4 ppm. Moreover, the fouling of the humic acid on the membrane was not homogeneously distributed. The acoustic impedance mismatch between the fouling of humic acid and PVDF membrane led the amplitude of ultrasonic signals reflected from the membrane surface to decrease with the increase of fouling deposition. C-scan results indicated that fouling deposition is a both temporal- and spatial-dependent process and that may be feasible to be sensitively and rapidly evaluated by high frequency ultrasound image incorporated with the analysis method.\",\"PeriodicalId\":6437,\"journal\":{\"name\":\"2010 IEEE International Ultrasonics Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2010.5935712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2010.5935712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

污垢的分布在很大程度上影响微滤膜的通量,其形成与操作压力、流速、进料液浓度/组成、膜材料等因素有关。因此,在进一步应用微滤膜之前,有必要对其污垢分布进行评估。在本研究中,我们尝试开发利用35 MHz高频超声系统测量污垢分布的方法和技术。实验采用公称孔径为0.22 μm的聚偏氟乙烯(PVDF)膜和4 ppm的腐植酸溶液组成的废水处理系统。操作压力和流量分别维持在1 bar和0.22 L/min。在过滤时间为5、15、30、60和100分钟后,用高频超声系统对过滤膜的区域进行光栅扫描。计算超声信号从膜表面反射的峰峰电压(Vpp),重建c扫描图像。随着过滤时间的延长,平均Vpp和滤液通量呈指数下降。随着滤液通量趋于饱和,平均Vpp的变化趋于最小。在4 ppm的腐植酸溶液中,平均Vpp从过滤开始时的3.02±0.05 V下降到过滤100 min时的1.73±0.25 V。腐植酸在膜上的污染分布不均匀。腐植酸污垢与PVDF膜的声阻抗失配导致膜表面反射的超声信号振幅随污垢沉积量的增加而减小。c扫描结果表明,污垢沉积是一个时空依赖的过程,结合高频超声图像和分析方法对污垢沉积进行灵敏、快速的评价是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation for the distribution of fouling deposition on the microfiltration membrane using high frequency ultrasound
Distribution of fouling may largely affect flux of the microfiltration membrane, in which its formation is related to several factors such as operating pressure, flow rate, concentration/composition of feed solution, and membrane material. It therefore is essential to evaluate fouling distribution on microfiltration membranes before they will be further applied. In this study, an attempt was explored to develop methods and techniques for measuring the fouling distribution using a 35 MHz high frequency ultrasound system. The experiments were carried out from a waste water treatment system that is composed of polyvinylidene fluoride (PVDF) membrane with nominal pore size of 0.22 μm and feed solutions with the humic acid solution of 4 ppm. The operating pressure and flow rate were respectively maintained at 1 bar and 0.22 L/min. Areas of those filtration membranes after 5, 15, 30, 60, and 100 minutes filtration durations were raster scanned by the high frequency ultrasound system. The peak-to-peak voltage (Vpp) of ultrasonic signals reflected from the surface of membrane was calculated for the reconstruction of C-scan images. The average Vpp and flux of filtrate were found to decrease exponentially with the increase of filtration duration. In accordance with the flux of filtrate approached to saturate, the variation of average Vpp tended to be nearly minimum. It can be readily observed for the changes of average Vpp that decreased from 3.02±0.05 V at the beginning of filtration to 1.73±0.25 V at 100 min duration after filtration with the humic acid solution of 4 ppm. Moreover, the fouling of the humic acid on the membrane was not homogeneously distributed. The acoustic impedance mismatch between the fouling of humic acid and PVDF membrane led the amplitude of ultrasonic signals reflected from the membrane surface to decrease with the increase of fouling deposition. C-scan results indicated that fouling deposition is a both temporal- and spatial-dependent process and that may be feasible to be sensitively and rapidly evaluated by high frequency ultrasound image incorporated with the analysis method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信