学习以动作为导向的抓握手法

Muhayy Ud Din, M. U. Sarwar, Imran Zahoor, W. Qazi, J. Rosell
{"title":"学习以动作为导向的抓握手法","authors":"Muhayy Ud Din, M. U. Sarwar, Imran Zahoor, W. Qazi, J. Rosell","doi":"10.1109/ETFA.2019.8869095","DOIUrl":null,"url":null,"abstract":"Complex manipulation tasks require grasping strategies that simultaneously satisfy the stability and the semantic constraints that have to be satisfied for an action to be feasible, referred as action-oriented semantic grasp strategies. This study develops a framework using machine learning techniques to compute action-oriented semantic grasps. It takes a 3D model of the object and the action to be performed as input and provides a vector of action-oriented semantic grasps. We evaluate the performance of machine learning (particularly classification techniques) to determine which approaches perform better for this problem. Using the best approaches, a multi-model classification technique is developed. The proposed approach is evaluated in simulation to grasp different kitchen objects using a parallel gripper. The results show that multi-model classification approach enhances the prediction accuracy. The implemented system can be used as to automate the data labeling process required for deep learning approaches.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"42 1","pages":"1575-1578"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Action-oriented Grasping for Manipulation\",\"authors\":\"Muhayy Ud Din, M. U. Sarwar, Imran Zahoor, W. Qazi, J. Rosell\",\"doi\":\"10.1109/ETFA.2019.8869095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex manipulation tasks require grasping strategies that simultaneously satisfy the stability and the semantic constraints that have to be satisfied for an action to be feasible, referred as action-oriented semantic grasp strategies. This study develops a framework using machine learning techniques to compute action-oriented semantic grasps. It takes a 3D model of the object and the action to be performed as input and provides a vector of action-oriented semantic grasps. We evaluate the performance of machine learning (particularly classification techniques) to determine which approaches perform better for this problem. Using the best approaches, a multi-model classification technique is developed. The proposed approach is evaluated in simulation to grasp different kitchen objects using a parallel gripper. The results show that multi-model classification approach enhances the prediction accuracy. The implemented system can be used as to automate the data labeling process required for deep learning approaches.\",\"PeriodicalId\":6682,\"journal\":{\"name\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"42 1\",\"pages\":\"1575-1578\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2019.8869095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8869095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

复杂的操作任务需要同时满足稳定性和语义约束的抓取策略,即面向动作的语义抓取策略。本研究开发了一个使用机器学习技术来计算面向动作的语义把握的框架。它采用对象的3D模型和要执行的动作作为输入,并提供面向动作的语义把握向量。我们评估机器学习的性能(特别是分类技术),以确定哪种方法在这个问题上表现更好。利用最佳方法,开发了一种多模型分类技术。通过仿真验证了该方法对不同厨房物体的抓取效果。结果表明,多模型分类方法提高了预测精度。所实现的系统可用于自动化深度学习方法所需的数据标记过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Action-oriented Grasping for Manipulation
Complex manipulation tasks require grasping strategies that simultaneously satisfy the stability and the semantic constraints that have to be satisfied for an action to be feasible, referred as action-oriented semantic grasp strategies. This study develops a framework using machine learning techniques to compute action-oriented semantic grasps. It takes a 3D model of the object and the action to be performed as input and provides a vector of action-oriented semantic grasps. We evaluate the performance of machine learning (particularly classification techniques) to determine which approaches perform better for this problem. Using the best approaches, a multi-model classification technique is developed. The proposed approach is evaluated in simulation to grasp different kitchen objects using a parallel gripper. The results show that multi-model classification approach enhances the prediction accuracy. The implemented system can be used as to automate the data labeling process required for deep learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信