重复采样,有效地规划类似的约束操作任务

Peter Lehner, A. Albu-Schäffer
{"title":"重复采样,有效地规划类似的约束操作任务","authors":"Peter Lehner, A. Albu-Schäffer","doi":"10.1109/IROS.2017.8206116","DOIUrl":null,"url":null,"abstract":"We present repetition sampling, a new adaptive strategy for sampling based planning, which extracts information from previous solutions to focus the search for a similar task on relevant configuration space. We show how to generate distributions for repetition sampling by learning Gaussian Mixture Models from prior solutions. We present how to bias a sampling based planner with the learned distribution to generate new paths for similar tasks. We illustrate our method in a simple maze which explains the generation of the distribution and how repetition sampling can generalize over different environments. We show how to apply repetition sampling to similar constrained manipulation tasks and present our results including significant speedup in execution time when compared to uniform sampling.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"39 1","pages":"2851-2856"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Repetition sampling for efficiently planning similar constrained manipulation tasks\",\"authors\":\"Peter Lehner, A. Albu-Schäffer\",\"doi\":\"10.1109/IROS.2017.8206116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present repetition sampling, a new adaptive strategy for sampling based planning, which extracts information from previous solutions to focus the search for a similar task on relevant configuration space. We show how to generate distributions for repetition sampling by learning Gaussian Mixture Models from prior solutions. We present how to bias a sampling based planner with the learned distribution to generate new paths for similar tasks. We illustrate our method in a simple maze which explains the generation of the distribution and how repetition sampling can generalize over different environments. We show how to apply repetition sampling to similar constrained manipulation tasks and present our results including significant speedup in execution time when compared to uniform sampling.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"39 1\",\"pages\":\"2851-2856\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8206116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们提出了一种新的基于采样规划的自适应策略,即重复采样,它从先前的解决方案中提取信息,从而将相似任务的搜索集中在相关的配置空间上。我们展示了如何通过从先前的解决方案中学习高斯混合模型来生成重复采样的分布。我们介绍了如何使用学习分布对基于抽样的规划器进行偏置,从而为类似的任务生成新的路径。我们在一个简单的迷宫中说明了我们的方法,它解释了分布的产生以及重复采样如何在不同的环境中进行推广。我们展示了如何将重复采样应用于类似的受限操作任务,并展示了我们的结果,包括与统一采样相比执行时间的显着加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repetition sampling for efficiently planning similar constrained manipulation tasks
We present repetition sampling, a new adaptive strategy for sampling based planning, which extracts information from previous solutions to focus the search for a similar task on relevant configuration space. We show how to generate distributions for repetition sampling by learning Gaussian Mixture Models from prior solutions. We present how to bias a sampling based planner with the learned distribution to generate new paths for similar tasks. We illustrate our method in a simple maze which explains the generation of the distribution and how repetition sampling can generalize over different environments. We show how to apply repetition sampling to similar constrained manipulation tasks and present our results including significant speedup in execution time when compared to uniform sampling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信