利用一些非传统和稳健措施的自适应Nadaraya-Watson核回归估计器:英国食品数据的数值应用

IF 0.7 4区 数学 Q2 MATHEMATICS
U. Shahzad, I. Ahmad, I. Almanjahie, Nadia H. AL – NOOR, M. Hanif
{"title":"利用一些非传统和稳健措施的自适应Nadaraya-Watson核回归估计器:英国食品数据的数值应用","authors":"U. Shahzad, I. Ahmad, I. Almanjahie, Nadia H. AL – NOOR, M. Hanif","doi":"10.15672/hujms.1167617","DOIUrl":null,"url":null,"abstract":"In nonparametric regression research, estimation of regression function is a prime concern. Recently, researchers developed some modified Nadaraya-Watson (N-W) regression estimators utilizing robust mean, median and harmonic mean. In this paper, we propose to utilize the additive combination of non-traditional measures i.e. (Hodges-Lehmann, Mid-Range, Tri-Mean, Quartile-Deviation) with the robust minimum covariance determinant (MCD) scale estimator in (N-W) regression estimator. Utilizing these measures, we get some new versions of (N-W) regression estimator. We also attempted to derive the properties of the proposed versions, such as bias, variance, mean square error (MSE), and mean integrated square error (MISE). The proposed estimators are compared with some of the existing estimators available in literature through a simulation study, utilizing two artificial populations. We also incorporated real-life application by taking British food data set denoted as Engel95, and assess the predictive ability of nonparametric regression, based on proposed and existing N-W estimators.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"25 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Nadaraya-Watson kernel regression estimators utilizing some non-traditional and robust measures: a numerical application of British food data\",\"authors\":\"U. Shahzad, I. Ahmad, I. Almanjahie, Nadia H. AL – NOOR, M. Hanif\",\"doi\":\"10.15672/hujms.1167617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In nonparametric regression research, estimation of regression function is a prime concern. Recently, researchers developed some modified Nadaraya-Watson (N-W) regression estimators utilizing robust mean, median and harmonic mean. In this paper, we propose to utilize the additive combination of non-traditional measures i.e. (Hodges-Lehmann, Mid-Range, Tri-Mean, Quartile-Deviation) with the robust minimum covariance determinant (MCD) scale estimator in (N-W) regression estimator. Utilizing these measures, we get some new versions of (N-W) regression estimator. We also attempted to derive the properties of the proposed versions, such as bias, variance, mean square error (MSE), and mean integrated square error (MISE). The proposed estimators are compared with some of the existing estimators available in literature through a simulation study, utilizing two artificial populations. We also incorporated real-life application by taking British food data set denoted as Engel95, and assess the predictive ability of nonparametric regression, based on proposed and existing N-W estimators.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1167617\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1167617","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在非参数回归研究中,回归函数的估计是一个重要的问题。近年来,研究人员利用鲁棒均值、中位数和调和均值开发了一些改进的Nadaraya-Watson (N-W)回归估计器。在本文中,我们提出在(N-W)回归估计中利用非传统测度(Hodges-Lehmann, Mid-Range, Tri-Mean, Quartile-Deviation)与稳健最小协方差行列式(MCD)尺度估计的加性组合。利用这些度量,我们得到了一些新的(N-W)回归估计量。我们还试图推导所提出版本的属性,如偏差、方差、均方误差(MSE)和均方误差(MISE)。通过模拟研究,利用两个人工种群,将所提出的估计量与文献中现有的一些估计量进行了比较。我们还结合实际应用,以英国食品数据集Engel95为例,基于提出的和现有的N-W估计器,评估了非参数回归的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Nadaraya-Watson kernel regression estimators utilizing some non-traditional and robust measures: a numerical application of British food data
In nonparametric regression research, estimation of regression function is a prime concern. Recently, researchers developed some modified Nadaraya-Watson (N-W) regression estimators utilizing robust mean, median and harmonic mean. In this paper, we propose to utilize the additive combination of non-traditional measures i.e. (Hodges-Lehmann, Mid-Range, Tri-Mean, Quartile-Deviation) with the robust minimum covariance determinant (MCD) scale estimator in (N-W) regression estimator. Utilizing these measures, we get some new versions of (N-W) regression estimator. We also attempted to derive the properties of the proposed versions, such as bias, variance, mean square error (MSE), and mean integrated square error (MISE). The proposed estimators are compared with some of the existing estimators available in literature through a simulation study, utilizing two artificial populations. We also incorporated real-life application by taking British food data set denoted as Engel95, and assess the predictive ability of nonparametric regression, based on proposed and existing N-W estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信