关于微分变换方法的几点说明

Pub Date : 2017-01-01 DOI:10.12988/JITE.2017.7410
W. Robin
{"title":"关于微分变换方法的几点说明","authors":"W. Robin","doi":"10.12988/JITE.2017.7410","DOIUrl":null,"url":null,"abstract":"The differential transform method and Herrera’s complex integral method are shown to be related through the Taylor-Cauchy transform, which appears as a genuine fore-runner of both methods. A short discussion of this result is provided. Mathematics Subject Classification: 34A05, 34A25, 34A30, 34A34, 35C10","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some remarks on the differential transform method\",\"authors\":\"W. Robin\",\"doi\":\"10.12988/JITE.2017.7410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The differential transform method and Herrera’s complex integral method are shown to be related through the Taylor-Cauchy transform, which appears as a genuine fore-runner of both methods. A short discussion of this result is provided. Mathematics Subject Classification: 34A05, 34A25, 34A30, 34A34, 35C10\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/JITE.2017.7410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/JITE.2017.7410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微分变换方法和Herrera的复积分方法通过Taylor-Cauchy变换被证明是相关的,Taylor-Cauchy变换似乎是这两种方法的真正先驱。对这一结果作了简短的讨论。数学学科分类:34A05、34A25、34A30、34A34、35C10
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some remarks on the differential transform method
The differential transform method and Herrera’s complex integral method are shown to be related through the Taylor-Cauchy transform, which appears as a genuine fore-runner of both methods. A short discussion of this result is provided. Mathematics Subject Classification: 34A05, 34A25, 34A30, 34A34, 35C10
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信