科罗拉多高原及其边缘构造

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS
K. Karlstrom, J. Wilgus, Jacob O. Thacker, B. Schmandt, D. Coblentz, M. Albonico
{"title":"科罗拉多高原及其边缘构造","authors":"K. Karlstrom, J. Wilgus, Jacob O. Thacker, B. Schmandt, D. Coblentz, M. Albonico","doi":"10.1146/annurev-earth-032320-111432","DOIUrl":null,"url":null,"abstract":"The Cenozoic Colorado Plateau physiographic province overlies multiple Precambrian provinces. Its ∼2-km elevation rim surrounds an ∼1.6-km elevation core that is underlain by thicker crust and lithospheric mantle, with a sharp structural transition ∼100 km concentrically inboard of the physiographic boundary on all but its northeastern margin. The region was uplifted in three episodes: ∼70–50 Ma uplift above sea level driven by flat-slab subduction; ∼38–23 Ma uplift associated with voluminous regional magmatism and slab removal, and less than 20 Ma uplift associated with inboard propagation of basaltic magmatism that tracked convective erosion of the lithospheric core. Neogene uplift helped integrate the Colorado River from the Rockies at 11 Ma to the Gulf of California by ∼5 Ma. The sharp rim-to-core transition defined by geological and geophysical data sets suggests a young transient plateau that is uplifting as it shrinks to merge with surrounding regions of postorogenic extension. ▪ The Colorado Plateau's iconic landscapes were shaped during its 70-million-year, still-enigmatic, tectonic evolution characterized by uplift and erosion. ▪ Uplift of the Colorado Plateau from sea level took place in three episodes, the youngest of which has been ongoing for the past 20 million years. ▪ Tectonism across the Colorado Plateau's nearest plate margin (the base of the plate!) is driving uplift and volcanism and enhancing its rugged landscapes. ▪ The bowl-shaped Colorado Plateau province is defined by ongoing uplift and an inboard sweep of magmatism around its margins. ▪ The keel of the Colorado Plateau is being thinned as the North American plate moves southwest through the underlying mantle. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"48 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tectonics of the Colorado Plateau and Its Margins\",\"authors\":\"K. Karlstrom, J. Wilgus, Jacob O. Thacker, B. Schmandt, D. Coblentz, M. Albonico\",\"doi\":\"10.1146/annurev-earth-032320-111432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cenozoic Colorado Plateau physiographic province overlies multiple Precambrian provinces. Its ∼2-km elevation rim surrounds an ∼1.6-km elevation core that is underlain by thicker crust and lithospheric mantle, with a sharp structural transition ∼100 km concentrically inboard of the physiographic boundary on all but its northeastern margin. The region was uplifted in three episodes: ∼70–50 Ma uplift above sea level driven by flat-slab subduction; ∼38–23 Ma uplift associated with voluminous regional magmatism and slab removal, and less than 20 Ma uplift associated with inboard propagation of basaltic magmatism that tracked convective erosion of the lithospheric core. Neogene uplift helped integrate the Colorado River from the Rockies at 11 Ma to the Gulf of California by ∼5 Ma. The sharp rim-to-core transition defined by geological and geophysical data sets suggests a young transient plateau that is uplifting as it shrinks to merge with surrounding regions of postorogenic extension. ▪ The Colorado Plateau's iconic landscapes were shaped during its 70-million-year, still-enigmatic, tectonic evolution characterized by uplift and erosion. ▪ Uplift of the Colorado Plateau from sea level took place in three episodes, the youngest of which has been ongoing for the past 20 million years. ▪ Tectonism across the Colorado Plateau's nearest plate margin (the base of the plate!) is driving uplift and volcanism and enhancing its rugged landscapes. ▪ The bowl-shaped Colorado Plateau province is defined by ongoing uplift and an inboard sweep of magmatism around its margins. ▪ The keel of the Colorado Plateau is being thinned as the North American plate moves southwest through the underlying mantle. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8034,\"journal\":{\"name\":\"Annual Review of Earth and Planetary Sciences\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Earth and Planetary Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-earth-032320-111432\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-032320-111432","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4

摘要

新生代科罗拉多高原地理省覆盖了多个前寒武纪省。它的~ 2公里的海拔边缘围绕着一个~ 1.6公里的海拔核心,该核心由较厚的地壳和岩石圈地幔所覆盖,在其东北边缘以外的所有地理边界内侧约100公里处有一个尖锐的结构转变。该地区的隆升经历了3个时期:在平板俯冲作用下,海平面上升~ 70 ~ 50 Ma;~ 38-23 Ma的隆起与大量的区域岩浆活动和板块移动有关,而小于20 Ma的隆起与玄武岩岩浆活动的向内传播有关,这跟踪了岩石圈核心的对流侵蚀。新近纪的隆起帮助科罗拉多河在11 Ma时从落基山脉到加利福尼亚湾的整合。地质和地球物理数据集定义的尖锐的边缘到核心的转变表明,一个年轻的瞬态高原在收缩时与周围的造山后伸展区域合并时正在上升。科罗拉多高原的标志性景观是在其7000万年的构造演化过程中形成的,至今仍是一个谜,其特征是隆起和侵蚀。▪科罗拉多高原从海平面上升经历了三次,其中最年轻的一次持续了2000万年。横跨科罗拉多高原最近的板块边缘(板块底部!)的构造活动正在推动隆起和火山活动,并增强了其崎岖的地貌。▪碗状的科罗拉多高原省是由持续的隆起和岩浆活动在其边缘的向内扫动所定义的。◆随着北美板块穿过地幔向西南移动,科罗拉多高原的龙骨正在变薄。《地球与行星科学年度评论》第50卷的最终在线出版日期预计为2022年5月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tectonics of the Colorado Plateau and Its Margins
The Cenozoic Colorado Plateau physiographic province overlies multiple Precambrian provinces. Its ∼2-km elevation rim surrounds an ∼1.6-km elevation core that is underlain by thicker crust and lithospheric mantle, with a sharp structural transition ∼100 km concentrically inboard of the physiographic boundary on all but its northeastern margin. The region was uplifted in three episodes: ∼70–50 Ma uplift above sea level driven by flat-slab subduction; ∼38–23 Ma uplift associated with voluminous regional magmatism and slab removal, and less than 20 Ma uplift associated with inboard propagation of basaltic magmatism that tracked convective erosion of the lithospheric core. Neogene uplift helped integrate the Colorado River from the Rockies at 11 Ma to the Gulf of California by ∼5 Ma. The sharp rim-to-core transition defined by geological and geophysical data sets suggests a young transient plateau that is uplifting as it shrinks to merge with surrounding regions of postorogenic extension. ▪ The Colorado Plateau's iconic landscapes were shaped during its 70-million-year, still-enigmatic, tectonic evolution characterized by uplift and erosion. ▪ Uplift of the Colorado Plateau from sea level took place in three episodes, the youngest of which has been ongoing for the past 20 million years. ▪ Tectonism across the Colorado Plateau's nearest plate margin (the base of the plate!) is driving uplift and volcanism and enhancing its rugged landscapes. ▪ The bowl-shaped Colorado Plateau province is defined by ongoing uplift and an inboard sweep of magmatism around its margins. ▪ The keel of the Colorado Plateau is being thinned as the North American plate moves southwest through the underlying mantle. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信