D. Burmistrov, D. Serov, D. Grigorieva, A. Simakin
{"title":"纳米氧化锌功能化可生物降解聚乳酸-羟基乙酸复合材料的理化、抗菌和细胞毒性研究","authors":"D. Burmistrov, D. Serov, D. Grigorieva, A. Simakin","doi":"10.1051/bioconf/20235702005","DOIUrl":null,"url":null,"abstract":"One of the tasks of modern nanotechnology is the creation of new materials with a wide range of applications and good antibacterial activity. In this work, we developed a new composite material based on poly(lactic-co-glycolic acid) and zinc oxide nanoparticles. The resulting material had a smooth surface without microdefects. The polymer matrix did not affect the generation of reactive oxygen species, 8-oxoguanine, and long-lived protein forms. The addition of ZnO-NPs enhanced the generation of these compounds. The addition of ZnO-NPs to the polymer at a concentration of 0.001-0.1 wt% made it possible to achieve a significant bacteriostatic effect, while not affecting the growth, division, and viability of eukaryotic cells. The resulting composite material is of great interest for biomedical use and the food industry due to controlled biodegradability and antibacterial activity.","PeriodicalId":8805,"journal":{"name":"BIO Web of Conferences","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical, Antibacterial, and Cytotoxic Properties of Composite Materials Based on Biodegradable Poly (Lactic-Co-Glycolic Acid) Functionalized with Zno Nanoparticles\",\"authors\":\"D. Burmistrov, D. Serov, D. Grigorieva, A. Simakin\",\"doi\":\"10.1051/bioconf/20235702005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the tasks of modern nanotechnology is the creation of new materials with a wide range of applications and good antibacterial activity. In this work, we developed a new composite material based on poly(lactic-co-glycolic acid) and zinc oxide nanoparticles. The resulting material had a smooth surface without microdefects. The polymer matrix did not affect the generation of reactive oxygen species, 8-oxoguanine, and long-lived protein forms. The addition of ZnO-NPs enhanced the generation of these compounds. The addition of ZnO-NPs to the polymer at a concentration of 0.001-0.1 wt% made it possible to achieve a significant bacteriostatic effect, while not affecting the growth, division, and viability of eukaryotic cells. The resulting composite material is of great interest for biomedical use and the food industry due to controlled biodegradability and antibacterial activity.\",\"PeriodicalId\":8805,\"journal\":{\"name\":\"BIO Web of Conferences\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIO Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/bioconf/20235702005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIO Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/bioconf/20235702005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physicochemical, Antibacterial, and Cytotoxic Properties of Composite Materials Based on Biodegradable Poly (Lactic-Co-Glycolic Acid) Functionalized with Zno Nanoparticles
One of the tasks of modern nanotechnology is the creation of new materials with a wide range of applications and good antibacterial activity. In this work, we developed a new composite material based on poly(lactic-co-glycolic acid) and zinc oxide nanoparticles. The resulting material had a smooth surface without microdefects. The polymer matrix did not affect the generation of reactive oxygen species, 8-oxoguanine, and long-lived protein forms. The addition of ZnO-NPs enhanced the generation of these compounds. The addition of ZnO-NPs to the polymer at a concentration of 0.001-0.1 wt% made it possible to achieve a significant bacteriostatic effect, while not affecting the growth, division, and viability of eukaryotic cells. The resulting composite material is of great interest for biomedical use and the food industry due to controlled biodegradability and antibacterial activity.