多项目公民众筹中的学习均衡贡献

Manisha Padala, Sankarshan Damle, Sujit Gujar
{"title":"多项目公民众筹中的学习均衡贡献","authors":"Manisha Padala, Sankarshan Damle, Sujit Gujar","doi":"10.1145/3486622.3493918","DOIUrl":null,"url":null,"abstract":"Crowdfunding is an efficient method for raising funds for projects. When used for non-excludable public projects, the process is termed Civic Crowdfunding (CC) and is an active research area. Researchers have analyzed CC in game-theoretic settings assuming that agents are interested in (and contribute to) a single public project. Generalizing the existing single project theory to determine agents’ equilibrium contributions for multiple projects is non-trivial – especially with budget-constrained agents. This work hypothesizes that the agents can learn their equilibrium contributions with repeated participation in multi-project CC. We model CC as a game to validate the hypothesis and build an RL-based simulator: EqC-Learner. We first show that EqC-Learner learns a policy that mimics equilibrium contributions in a single project case for the existing CC mechanisms. To validate EqC-Learner for the multi-project case, we present certain theoretical results for the general multi-project case. Via extensive simulation-based experiments, we show that the learned contributions in EqC-Learner follow all the available theoretical analysis. Thus, we believe that such an RL-based simulator can learn equilibrium contributions for the general multi-project CC mechanism.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Equilibrium Contributions in Multi-project Civic Crowdfunding\",\"authors\":\"Manisha Padala, Sankarshan Damle, Sujit Gujar\",\"doi\":\"10.1145/3486622.3493918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowdfunding is an efficient method for raising funds for projects. When used for non-excludable public projects, the process is termed Civic Crowdfunding (CC) and is an active research area. Researchers have analyzed CC in game-theoretic settings assuming that agents are interested in (and contribute to) a single public project. Generalizing the existing single project theory to determine agents’ equilibrium contributions for multiple projects is non-trivial – especially with budget-constrained agents. This work hypothesizes that the agents can learn their equilibrium contributions with repeated participation in multi-project CC. We model CC as a game to validate the hypothesis and build an RL-based simulator: EqC-Learner. We first show that EqC-Learner learns a policy that mimics equilibrium contributions in a single project case for the existing CC mechanisms. To validate EqC-Learner for the multi-project case, we present certain theoretical results for the general multi-project case. Via extensive simulation-based experiments, we show that the learned contributions in EqC-Learner follow all the available theoretical analysis. Thus, we believe that such an RL-based simulator can learn equilibrium contributions for the general multi-project CC mechanism.\",\"PeriodicalId\":89230,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3486622.3493918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486622.3493918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

众筹是一种有效的项目融资方式。当用于非排他性公共项目时,这个过程被称为公民众筹(CC),是一个活跃的研究领域。研究人员在博弈论背景下分析了CC,假设代理人对单个公共项目感兴趣(并为之做出贡献)。推广现有的单一项目理论来确定多个项目中代理人的均衡贡献是非常重要的,特别是在预算受限的情况下。本研究假设智能体可以通过重复参与多项目CC学习其均衡贡献。我们将CC建模为一个游戏来验证这一假设,并构建了一个基于强化学习的模拟器:EqC-Learner。我们首先展示了EqC-Learner学习了一种策略,该策略模仿了现有CC机制中单个项目案例中的均衡贡献。为了验证EqC-Learner在多项目案例中的有效性,我们针对一般的多项目案例给出了一定的理论结果。通过广泛的基于模拟的实验,我们表明EqC-Learner中的学习贡献遵循所有可用的理论分析。因此,我们认为这种基于rl的模拟器可以学习一般多项目CC机制的平衡贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Equilibrium Contributions in Multi-project Civic Crowdfunding
Crowdfunding is an efficient method for raising funds for projects. When used for non-excludable public projects, the process is termed Civic Crowdfunding (CC) and is an active research area. Researchers have analyzed CC in game-theoretic settings assuming that agents are interested in (and contribute to) a single public project. Generalizing the existing single project theory to determine agents’ equilibrium contributions for multiple projects is non-trivial – especially with budget-constrained agents. This work hypothesizes that the agents can learn their equilibrium contributions with repeated participation in multi-project CC. We model CC as a game to validate the hypothesis and build an RL-based simulator: EqC-Learner. We first show that EqC-Learner learns a policy that mimics equilibrium contributions in a single project case for the existing CC mechanisms. To validate EqC-Learner for the multi-project case, we present certain theoretical results for the general multi-project case. Via extensive simulation-based experiments, we show that the learned contributions in EqC-Learner follow all the available theoretical analysis. Thus, we believe that such an RL-based simulator can learn equilibrium contributions for the general multi-project CC mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信