尺度空间SIFT流

Weichao Qiu, Xinggang Wang, X. Bai, A. Yuille, Z. Tu
{"title":"尺度空间SIFT流","authors":"Weichao Qiu, Xinggang Wang, X. Bai, A. Yuille, Z. Tu","doi":"10.1109/WACV.2014.6835734","DOIUrl":null,"url":null,"abstract":"The state-of-the-art SIFT flow has been widely adopted for the general image matching task, especially in dealing with image pairs from similar scenes but with different object configurations. However, the way in which the dense SIFT features are computed at a fixed scale in the SIFT flow method limits its capability of dealing with scenes of large scale changes. In this paper, we propose a simple, intuitive, and very effective approach, Scale-Space SIFT flow, to deal with the large scale differences in different image locations. We introduce a scale field to the SIFT flow function to automatically explore the scale deformations. Our approach achieves similar performance as the SIFT flow method on general natural scenes but obtains significant improvement on the images with large scale differences. Compared with a recent method that addresses the similar problem, our approach shows its clear advantage being more effective, and significantly less demanding in memory and time requirement.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"4 1","pages":"1112-1119"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Scale-Space SIFT flow\",\"authors\":\"Weichao Qiu, Xinggang Wang, X. Bai, A. Yuille, Z. Tu\",\"doi\":\"10.1109/WACV.2014.6835734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state-of-the-art SIFT flow has been widely adopted for the general image matching task, especially in dealing with image pairs from similar scenes but with different object configurations. However, the way in which the dense SIFT features are computed at a fixed scale in the SIFT flow method limits its capability of dealing with scenes of large scale changes. In this paper, we propose a simple, intuitive, and very effective approach, Scale-Space SIFT flow, to deal with the large scale differences in different image locations. We introduce a scale field to the SIFT flow function to automatically explore the scale deformations. Our approach achieves similar performance as the SIFT flow method on general natural scenes but obtains significant improvement on the images with large scale differences. Compared with a recent method that addresses the similar problem, our approach shows its clear advantage being more effective, and significantly less demanding in memory and time requirement.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"4 1\",\"pages\":\"1112-1119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6835734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6835734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

最先进的SIFT流已被广泛应用于一般的图像匹配任务,特别是在处理来自相似场景但具有不同目标配置的图像对时。然而,SIFT流方法中密集SIFT特征在固定尺度上的计算方式限制了其处理大规模变化场景的能力。在本文中,我们提出了一种简单、直观且非常有效的方法——尺度-空间SIFT流来处理不同图像位置的大尺度差异。我们在SIFT流函数中引入尺度场来自动探测尺度变形。我们的方法在一般的自然场景上取得了与SIFT流方法相似的性能,但在大尺度差异的图像上取得了显著的改进。与最近解决类似问题的方法相比,我们的方法显示出其明显的优势,即更有效,并且对内存和时间的要求显着降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scale-Space SIFT flow
The state-of-the-art SIFT flow has been widely adopted for the general image matching task, especially in dealing with image pairs from similar scenes but with different object configurations. However, the way in which the dense SIFT features are computed at a fixed scale in the SIFT flow method limits its capability of dealing with scenes of large scale changes. In this paper, we propose a simple, intuitive, and very effective approach, Scale-Space SIFT flow, to deal with the large scale differences in different image locations. We introduce a scale field to the SIFT flow function to automatically explore the scale deformations. Our approach achieves similar performance as the SIFT flow method on general natural scenes but obtains significant improvement on the images with large scale differences. Compared with a recent method that addresses the similar problem, our approach shows its clear advantage being more effective, and significantly less demanding in memory and time requirement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信