Hmayag Partamian, Fouad Khnaisser, Mohamad Mansour, Reem A. Mahmoud, H.M. Hajj, F. Karameh
{"title":"基于连接特征的可解释人工智能的脑电图发作检测深度模型","authors":"Hmayag Partamian, Fouad Khnaisser, Mohamad Mansour, Reem A. Mahmoud, H.M. Hajj, F. Karameh","doi":"10.5121/ijbes.2021.8401","DOIUrl":null,"url":null,"abstract":"During seizures, different types of communication between different parts of the brain are characterized by many state of the art connectivity measures. We propose to employ a set of undirected (spectral matrix, the inverse of the spectral matrix, coherence, partial coherence, and phase-locking value) and directed features (directed coherence, the partial directed coherence) to detect seizures using a deep neural network. Taking our data as a sequence of ten sub-windows, an optimal deep sequence learning architecture using attention, CNN, BiLstm, and fully connected neural networks is designed to output the detection label and the relevance of the features. The relevance is computed using the weights of the model in the activation values of the receptive fields at a particular layer. The best model resulted in 97.03% accuracy using balanced MIT-BIH data subset. Finally, an analysis of the relevance of the features is reported.","PeriodicalId":73426,"journal":{"name":"International journal of biomedical engineering and clinical science","volume":"189 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep Model for EEG Seizure Detection with Explainable AI using Connectivity Features\",\"authors\":\"Hmayag Partamian, Fouad Khnaisser, Mohamad Mansour, Reem A. Mahmoud, H.M. Hajj, F. Karameh\",\"doi\":\"10.5121/ijbes.2021.8401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During seizures, different types of communication between different parts of the brain are characterized by many state of the art connectivity measures. We propose to employ a set of undirected (spectral matrix, the inverse of the spectral matrix, coherence, partial coherence, and phase-locking value) and directed features (directed coherence, the partial directed coherence) to detect seizures using a deep neural network. Taking our data as a sequence of ten sub-windows, an optimal deep sequence learning architecture using attention, CNN, BiLstm, and fully connected neural networks is designed to output the detection label and the relevance of the features. The relevance is computed using the weights of the model in the activation values of the receptive fields at a particular layer. The best model resulted in 97.03% accuracy using balanced MIT-BIH data subset. Finally, an analysis of the relevance of the features is reported.\",\"PeriodicalId\":73426,\"journal\":{\"name\":\"International journal of biomedical engineering and clinical science\",\"volume\":\"189 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of biomedical engineering and clinical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijbes.2021.8401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biomedical engineering and clinical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijbes.2021.8401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Model for EEG Seizure Detection with Explainable AI using Connectivity Features
During seizures, different types of communication between different parts of the brain are characterized by many state of the art connectivity measures. We propose to employ a set of undirected (spectral matrix, the inverse of the spectral matrix, coherence, partial coherence, and phase-locking value) and directed features (directed coherence, the partial directed coherence) to detect seizures using a deep neural network. Taking our data as a sequence of ten sub-windows, an optimal deep sequence learning architecture using attention, CNN, BiLstm, and fully connected neural networks is designed to output the detection label and the relevance of the features. The relevance is computed using the weights of the model in the activation values of the receptive fields at a particular layer. The best model resulted in 97.03% accuracy using balanced MIT-BIH data subset. Finally, an analysis of the relevance of the features is reported.