Claire L Mitchell, Gabriel J Cler, Susan K Fager, Paola Contessa, Serge H Roy, Gianluca De Luca, Joshua C Kline, Jennifer M Vojtech
{"title":"基于能力的辅助和替代性交流键盘:了解个人运动模式如何转化为更高效的键盘:根据用户特定运动能力生成键盘的方法。","authors":"Claire L Mitchell, Gabriel J Cler, Susan K Fager, Paola Contessa, Serge H Roy, Gianluca De Luca, Joshua C Kline, Jennifer M Vojtech","doi":"10.1145/3491101.3519845","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the evaluation of ability-based methods extended to keyboard generation for alternative communication in people with dexterity impairments due to motor disabilities. Our approach characterizes user-specific cursor control abilities from a multidirectional point-select task to configure letters on a virtual keyboard based on estimated time, distance, and direction of movement. These methods were evaluated in three individuals with motor disabilities against a generically optimized keyboard and the ubiquitous QWERTY keyboard. We highlight key observations relating to the heterogeneity of the manifestation of motor disabilities, perceived importance of communication technology, and quantitative improvements in communication performance when characterizing an individual's movement abilities to design personalized AAC interfaces.</p>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589473/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ability-based Keyboards for Augmentative and Alternative Communication: Understanding How Individuals' Movement Patterns Translate to More Efficient Keyboards: Methods to Generate Keyboards Tailored to User-specific Motor Abilities.\",\"authors\":\"Claire L Mitchell, Gabriel J Cler, Susan K Fager, Paola Contessa, Serge H Roy, Gianluca De Luca, Joshua C Kline, Jennifer M Vojtech\",\"doi\":\"10.1145/3491101.3519845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents the evaluation of ability-based methods extended to keyboard generation for alternative communication in people with dexterity impairments due to motor disabilities. Our approach characterizes user-specific cursor control abilities from a multidirectional point-select task to configure letters on a virtual keyboard based on estimated time, distance, and direction of movement. These methods were evaluated in three individuals with motor disabilities against a generically optimized keyboard and the ubiquitous QWERTY keyboard. We highlight key observations relating to the heterogeneity of the manifestation of motor disabilities, perceived importance of communication technology, and quantitative improvements in communication performance when characterizing an individual's movement abilities to design personalized AAC interfaces.</p>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9589473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491101.3519845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491101.3519845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Ability-based Keyboards for Augmentative and Alternative Communication: Understanding How Individuals' Movement Patterns Translate to More Efficient Keyboards: Methods to Generate Keyboards Tailored to User-specific Motor Abilities.
This study presents the evaluation of ability-based methods extended to keyboard generation for alternative communication in people with dexterity impairments due to motor disabilities. Our approach characterizes user-specific cursor control abilities from a multidirectional point-select task to configure letters on a virtual keyboard based on estimated time, distance, and direction of movement. These methods were evaluated in three individuals with motor disabilities against a generically optimized keyboard and the ubiquitous QWERTY keyboard. We highlight key observations relating to the heterogeneity of the manifestation of motor disabilities, perceived importance of communication technology, and quantitative improvements in communication performance when characterizing an individual's movement abilities to design personalized AAC interfaces.