{"title":"盐酸依西美坦自纳米乳化给药系统的体内药代动力学研究","authors":"","doi":"10.33263/lianbs124.098","DOIUrl":null,"url":null,"abstract":"Exemestane HCl (EXM) is a novel irreversible steroidal aromatase inhibitor for the adjuvant treatment of hormonally responsive breast cancer in postmenopausal women. Poor aqueous solubility of EXM is the biggest hurdle for developing solid oral dosage forms. That’s why the current study aims to evaluate the pharmacokinetics of formulating the EXM loaded self nano emulsifying drug delivery (SNEDDs) system. SNEDDs were formulated using Labrafac CC (20% w/v), Tween 80 (27%w/v), and Triacetin (54%w/v) as oil, surfactant, and co-surfactant, respectively, by water titration method. A comparative Pharmacokinetics study of EXM suspension and EXM SNEDDS was performed using a female waster rate. The developed formulation had a 37.65± 5.08 nm size and a 21.57±0.73 sec of self-emulsification time. Cmax of EXM suspension and EXM SNEDDS was found to be 122.49±8.27 and 194.86 ± 14.75 ng/mL, respectively. AUC0-720 of EMX SNEDDS was 1.71 times higher compared to EXM suspension, indicating that lipid nanoparticles improve the drug concentration in the plasma. So we conclude that SNEDDS improves the pharmacokinetic of EXM, which subsequently improves oral bioavailability.","PeriodicalId":18009,"journal":{"name":"Letters in Applied NanoBioScience","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Vivo Pharmacokinetics Study of Exemestane Hydrochloride Self-nanoemulsifying Drug Delivery Systems via Oral Route\",\"authors\":\"\",\"doi\":\"10.33263/lianbs124.098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exemestane HCl (EXM) is a novel irreversible steroidal aromatase inhibitor for the adjuvant treatment of hormonally responsive breast cancer in postmenopausal women. Poor aqueous solubility of EXM is the biggest hurdle for developing solid oral dosage forms. That’s why the current study aims to evaluate the pharmacokinetics of formulating the EXM loaded self nano emulsifying drug delivery (SNEDDs) system. SNEDDs were formulated using Labrafac CC (20% w/v), Tween 80 (27%w/v), and Triacetin (54%w/v) as oil, surfactant, and co-surfactant, respectively, by water titration method. A comparative Pharmacokinetics study of EXM suspension and EXM SNEDDS was performed using a female waster rate. The developed formulation had a 37.65± 5.08 nm size and a 21.57±0.73 sec of self-emulsification time. Cmax of EXM suspension and EXM SNEDDS was found to be 122.49±8.27 and 194.86 ± 14.75 ng/mL, respectively. AUC0-720 of EMX SNEDDS was 1.71 times higher compared to EXM suspension, indicating that lipid nanoparticles improve the drug concentration in the plasma. So we conclude that SNEDDS improves the pharmacokinetic of EXM, which subsequently improves oral bioavailability.\",\"PeriodicalId\":18009,\"journal\":{\"name\":\"Letters in Applied NanoBioScience\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied NanoBioScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/lianbs124.098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied NanoBioScience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/lianbs124.098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In-Vivo Pharmacokinetics Study of Exemestane Hydrochloride Self-nanoemulsifying Drug Delivery Systems via Oral Route
Exemestane HCl (EXM) is a novel irreversible steroidal aromatase inhibitor for the adjuvant treatment of hormonally responsive breast cancer in postmenopausal women. Poor aqueous solubility of EXM is the biggest hurdle for developing solid oral dosage forms. That’s why the current study aims to evaluate the pharmacokinetics of formulating the EXM loaded self nano emulsifying drug delivery (SNEDDs) system. SNEDDs were formulated using Labrafac CC (20% w/v), Tween 80 (27%w/v), and Triacetin (54%w/v) as oil, surfactant, and co-surfactant, respectively, by water titration method. A comparative Pharmacokinetics study of EXM suspension and EXM SNEDDS was performed using a female waster rate. The developed formulation had a 37.65± 5.08 nm size and a 21.57±0.73 sec of self-emulsification time. Cmax of EXM suspension and EXM SNEDDS was found to be 122.49±8.27 and 194.86 ± 14.75 ng/mL, respectively. AUC0-720 of EMX SNEDDS was 1.71 times higher compared to EXM suspension, indicating that lipid nanoparticles improve the drug concentration in the plasma. So we conclude that SNEDDS improves the pharmacokinetic of EXM, which subsequently improves oral bioavailability.