{"title":"小型潜艇水下观测站的水下网络","authors":"A. Periola, M. Sumbwanyambe","doi":"10.1109/icABCD59051.2023.10220457","DOIUrl":null,"url":null,"abstract":"Ice melting in the Arctic enables the conduct of underwater neutrino astronomy in new regions with maritime resources. The presented research proposes a novel underwater network that is integrated with terrestrial computing entities to obtain underwater astronomy-associated data. In addition, the proposed network architecture enhances the conduct of underwater neutrino astronomy. This is done by increasing the potential neutrino presence points. Analysis shows that the use of the arctic region in addition to the existing region of Lake Baikal in comparison to the existing case (where only Lake Baikal is utilized) increases the potential neutrino presence points by an average of (28.3 – 65.7) %.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Underwater Network for Mini-Submarine Underwater Observatory\",\"authors\":\"A. Periola, M. Sumbwanyambe\",\"doi\":\"10.1109/icABCD59051.2023.10220457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ice melting in the Arctic enables the conduct of underwater neutrino astronomy in new regions with maritime resources. The presented research proposes a novel underwater network that is integrated with terrestrial computing entities to obtain underwater astronomy-associated data. In addition, the proposed network architecture enhances the conduct of underwater neutrino astronomy. This is done by increasing the potential neutrino presence points. Analysis shows that the use of the arctic region in addition to the existing region of Lake Baikal in comparison to the existing case (where only Lake Baikal is utilized) increases the potential neutrino presence points by an average of (28.3 – 65.7) %.\",\"PeriodicalId\":51314,\"journal\":{\"name\":\"Big Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/icABCD59051.2023.10220457\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/icABCD59051.2023.10220457","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An Underwater Network for Mini-Submarine Underwater Observatory
Ice melting in the Arctic enables the conduct of underwater neutrino astronomy in new regions with maritime resources. The presented research proposes a novel underwater network that is integrated with terrestrial computing entities to obtain underwater astronomy-associated data. In addition, the proposed network architecture enhances the conduct of underwater neutrino astronomy. This is done by increasing the potential neutrino presence points. Analysis shows that the use of the arctic region in addition to the existing region of Lake Baikal in comparison to the existing case (where only Lake Baikal is utilized) increases the potential neutrino presence points by an average of (28.3 – 65.7) %.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.