表面生长方程弱解的大时间行为

IF 0.5 4区 数学 Q3 MATHEMATICS
Xuewen Wang, Chenggang Liu, Yanqing Wang, P. Han
{"title":"表面生长方程弱解的大时间行为","authors":"Xuewen Wang, Chenggang Liu, Yanqing Wang, P. Han","doi":"10.1063/5.0136559","DOIUrl":null,"url":null,"abstract":"This paper studies the existence and decay estimates of weak solutions to the surface growth equation. First, the global existence of weak solutions is obtained by the approximation method introduced by Majda and Bertozzi [Vorticity and Incompressible Flow (Cambridge University Press, 2001)]. Then, we derive the L2-decay rates of weak solutions via the Fourier splitting method under the assumption that u0∈L1(R)∩L2(R). For more general cases, i.e., u0∈L2(R), the behavior of weak solutions in L2 is obtained by the spectral theory of self-adjoint operators.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"49 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large time behavior of weak solutions to the surface growth equation\",\"authors\":\"Xuewen Wang, Chenggang Liu, Yanqing Wang, P. Han\",\"doi\":\"10.1063/5.0136559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the existence and decay estimates of weak solutions to the surface growth equation. First, the global existence of weak solutions is obtained by the approximation method introduced by Majda and Bertozzi [Vorticity and Incompressible Flow (Cambridge University Press, 2001)]. Then, we derive the L2-decay rates of weak solutions via the Fourier splitting method under the assumption that u0∈L1(R)∩L2(R). For more general cases, i.e., u0∈L2(R), the behavior of weak solutions in L2 is obtained by the spectral theory of self-adjoint operators.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0136559\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0136559","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了表面生长方程弱解的存在性和衰减估计。首先,利用Majda和Bertozzi [Vorticity and Incompressible Flow (Cambridge University Press, 2001)]引入的近似方法,得到弱解的全局存在性。然后,在假设u0∈L1(R)∩L2(R)的前提下,通过傅里叶分裂方法导出弱解的L2衰减率。对于更一般的情况,即u0∈L2(R),利用自伴随算子的谱理论得到了L2中弱解的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large time behavior of weak solutions to the surface growth equation
This paper studies the existence and decay estimates of weak solutions to the surface growth equation. First, the global existence of weak solutions is obtained by the approximation method introduced by Majda and Bertozzi [Vorticity and Incompressible Flow (Cambridge University Press, 2001)]. Then, we derive the L2-decay rates of weak solutions via the Fourier splitting method under the assumption that u0∈L1(R)∩L2(R). For more general cases, i.e., u0∈L2(R), the behavior of weak solutions in L2 is obtained by the spectral theory of self-adjoint operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信