{"title":"一系列钯和铂二茂铁胺硫化物和硒化物的热稳定性和热氧化稳定性","authors":"H. Ali, Isra H. Ali","doi":"10.1177/17475198221141979","DOIUrl":null,"url":null,"abstract":"Ferrocenylamine complexes have found increasing applications in the fields of catalysis in various organic reactions, industry, medical treatments and enzyme–activity determinations. Therefore, information related to the thermal and thermo-oxidative stability of these compounds is important for such applications; however, this information is currently limited. Twenty previously prepared palladium and platinum ferrocenylamine complexes with systematic structural variations are examined for their thermal (under nitrogen) and thermo-oxidation stability (under atmospheric air) using thermogravimetry (TG), differential thermal analysis (DTG), and differential scanning calorimetry (DSC) techniques. Degradation products are identified by comparing thermogravimetric analysis and theoretical calculations. Structure–stability studies are also discussed. The results show that all the compounds have high thermal and thermo-oxidative stabilities of up to 265 and 173 °C, respectively. Electron–donating substituents enhance the thermal and thermo-oxidative stabilities of the palladium complexes (t-Bu, selenide electrophiles and dielectrophiles), while those with destabilizing effects are aromatic substituents (Ph and tolyl). Most platinum ferrocenylamine sulfides and selenides show higher thermal and thermo-oxidative stabilities than their corresponding palladium analogs. All the prepared compounds show high thermal and thermo-oxidative stability which reinforces their catalytic and industrial applications. However, their thermal stability is higher than their thermo-oxidative stability.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"387 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and thermo-oxidative stability of a series of palladium and platinum ferrocenylamine sulfides and selenides\",\"authors\":\"H. Ali, Isra H. Ali\",\"doi\":\"10.1177/17475198221141979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferrocenylamine complexes have found increasing applications in the fields of catalysis in various organic reactions, industry, medical treatments and enzyme–activity determinations. Therefore, information related to the thermal and thermo-oxidative stability of these compounds is important for such applications; however, this information is currently limited. Twenty previously prepared palladium and platinum ferrocenylamine complexes with systematic structural variations are examined for their thermal (under nitrogen) and thermo-oxidation stability (under atmospheric air) using thermogravimetry (TG), differential thermal analysis (DTG), and differential scanning calorimetry (DSC) techniques. Degradation products are identified by comparing thermogravimetric analysis and theoretical calculations. Structure–stability studies are also discussed. The results show that all the compounds have high thermal and thermo-oxidative stabilities of up to 265 and 173 °C, respectively. Electron–donating substituents enhance the thermal and thermo-oxidative stabilities of the palladium complexes (t-Bu, selenide electrophiles and dielectrophiles), while those with destabilizing effects are aromatic substituents (Ph and tolyl). Most platinum ferrocenylamine sulfides and selenides show higher thermal and thermo-oxidative stabilities than their corresponding palladium analogs. All the prepared compounds show high thermal and thermo-oxidative stability which reinforces their catalytic and industrial applications. However, their thermal stability is higher than their thermo-oxidative stability.\",\"PeriodicalId\":15318,\"journal\":{\"name\":\"Journal of Chemical Research-s\",\"volume\":\"387 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Research-s\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/17475198221141979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221141979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal and thermo-oxidative stability of a series of palladium and platinum ferrocenylamine sulfides and selenides
Ferrocenylamine complexes have found increasing applications in the fields of catalysis in various organic reactions, industry, medical treatments and enzyme–activity determinations. Therefore, information related to the thermal and thermo-oxidative stability of these compounds is important for such applications; however, this information is currently limited. Twenty previously prepared palladium and platinum ferrocenylamine complexes with systematic structural variations are examined for their thermal (under nitrogen) and thermo-oxidation stability (under atmospheric air) using thermogravimetry (TG), differential thermal analysis (DTG), and differential scanning calorimetry (DSC) techniques. Degradation products are identified by comparing thermogravimetric analysis and theoretical calculations. Structure–stability studies are also discussed. The results show that all the compounds have high thermal and thermo-oxidative stabilities of up to 265 and 173 °C, respectively. Electron–donating substituents enhance the thermal and thermo-oxidative stabilities of the palladium complexes (t-Bu, selenide electrophiles and dielectrophiles), while those with destabilizing effects are aromatic substituents (Ph and tolyl). Most platinum ferrocenylamine sulfides and selenides show higher thermal and thermo-oxidative stabilities than their corresponding palladium analogs. All the prepared compounds show high thermal and thermo-oxidative stability which reinforces their catalytic and industrial applications. However, their thermal stability is higher than their thermo-oxidative stability.
期刊介绍:
The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.