{"title":"通过元学习将业务流程行为与编码技术匹配:异常检测研究","authors":"G. Tavares, Sylvio Barbon Junior","doi":"10.2298/csis220110005t","DOIUrl":null,"url":null,"abstract":"Recording anomalous traces in business processes diminishes an event log?s quality. The abnormalities may represent bad execution, security issues, or deviant behavior. Focusing on mitigating this phenomenon, organizations spend efforts to detect anomalous traces in their business processes to save resources and improve process execution. However, in many real-world environments, reference models are unavailable, requiring expert assistance and increasing costs. The con15 siderable number of techniques and reduced availability of experts pose an additional challenge for particular scenarios. In this work, we combine the representational power of encoding with a Meta-learning strategy to enhance the detection of anomalous traces in event logs towards fitting the best discriminative capability be tween common and irregular traces. Our approach creates an event log profile and recommends the most suitable encoding technique to increase the anomaly detetion performance. We used eight encoding techniques from different families, 80 log descriptors, 168 event logs, and six anomaly types for experiments. Results indicate that event log characteristics influence the representational capability of encodings. Moreover, we investigate the process behavior?s influence for choosing the suitable encoding technique, demonstrating that traditional process mining analysis can be leveraged when matched with intelligent decision support approaches.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"91 1","pages":"1207-1233"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matching business process behavior with encoding techniques via meta-learning: An anomaly detection study\",\"authors\":\"G. Tavares, Sylvio Barbon Junior\",\"doi\":\"10.2298/csis220110005t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recording anomalous traces in business processes diminishes an event log?s quality. The abnormalities may represent bad execution, security issues, or deviant behavior. Focusing on mitigating this phenomenon, organizations spend efforts to detect anomalous traces in their business processes to save resources and improve process execution. However, in many real-world environments, reference models are unavailable, requiring expert assistance and increasing costs. The con15 siderable number of techniques and reduced availability of experts pose an additional challenge for particular scenarios. In this work, we combine the representational power of encoding with a Meta-learning strategy to enhance the detection of anomalous traces in event logs towards fitting the best discriminative capability be tween common and irregular traces. Our approach creates an event log profile and recommends the most suitable encoding technique to increase the anomaly detetion performance. We used eight encoding techniques from different families, 80 log descriptors, 168 event logs, and six anomaly types for experiments. Results indicate that event log characteristics influence the representational capability of encodings. Moreover, we investigate the process behavior?s influence for choosing the suitable encoding technique, demonstrating that traditional process mining analysis can be leveraged when matched with intelligent decision support approaches.\",\"PeriodicalId\":50636,\"journal\":{\"name\":\"Computer Science and Information Systems\",\"volume\":\"91 1\",\"pages\":\"1207-1233\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2298/csis220110005t\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2298/csis220110005t","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Matching business process behavior with encoding techniques via meta-learning: An anomaly detection study
Recording anomalous traces in business processes diminishes an event log?s quality. The abnormalities may represent bad execution, security issues, or deviant behavior. Focusing on mitigating this phenomenon, organizations spend efforts to detect anomalous traces in their business processes to save resources and improve process execution. However, in many real-world environments, reference models are unavailable, requiring expert assistance and increasing costs. The con15 siderable number of techniques and reduced availability of experts pose an additional challenge for particular scenarios. In this work, we combine the representational power of encoding with a Meta-learning strategy to enhance the detection of anomalous traces in event logs towards fitting the best discriminative capability be tween common and irregular traces. Our approach creates an event log profile and recommends the most suitable encoding technique to increase the anomaly detetion performance. We used eight encoding techniques from different families, 80 log descriptors, 168 event logs, and six anomaly types for experiments. Results indicate that event log characteristics influence the representational capability of encodings. Moreover, we investigate the process behavior?s influence for choosing the suitable encoding technique, demonstrating that traditional process mining analysis can be leveraged when matched with intelligent decision support approaches.
期刊介绍:
About the journal
Home page
Contact information
Aims and scope
Indexing information
Editorial policies
ComSIS consortium
Journal boards
Managing board
For authors
Information for contributors
Paper submission
Article submission through OJS
Copyright transfer form
Download section
For readers
Forthcoming articles
Current issue
Archive
Subscription
For reviewers
View and review submissions
News
Journal''s Facebook page
Call for special issue
New issue notification
Aims and scope
Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.