{"title":"采用传输线建模和功能模型接口的数值鲁棒联合仿真","authors":"R. Braun, D. Fritzson","doi":"10.1177/00375497221097128","DOIUrl":null,"url":null,"abstract":"Modeling and simulation are important tools for efficient product development. There is a growing need for collaboration, interdisciplinary simulation, and re-usability of simulation models. This usually requires simulation tools to be coupled together for co-simulation. However, the usefulness of co-simulation is often limited by poor performance and numerical instability. Achieving stability is especially hard for stiff mechanical couplings. A suitable method is to use transmission line modeling (TLM), which separates submodels using physically motivated time delays. The most established standard for tool coupling today is the Functional Mock-up Interface (FMI). Two example models in one dimension and three dimensions are used to demonstrate how the next version of FMI for co-simulation can be used in conjunction with TLM. The stability properties of TLM are also proven by numerical analysis. Results show that numerical stability can be ensured without compromising on performance. With the current FMI standard, this requires tailor-made models and custom solutions for the interpolation of input variables. Without using custom solutions, variables must be exchanged using sampled communication and extrapolation. In this case, stability properties can be improved by reducing communication step size. However, it is shown that stability cannot be achieved even when using unacceptably small communication steps. This motivates the need for the next version of FMI to include an intermediate update mode, where variables can be interchanged in between communication points. It is suggested that the FMI standard should be extended with optional callback functions for providing intermediate output variables and requesting intermediate input variables.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"142 1","pages":"1057 - 1070"},"PeriodicalIF":1.3000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerically robust co-simulation using transmission line modeling and the Functional Mock-up Interface\",\"authors\":\"R. Braun, D. Fritzson\",\"doi\":\"10.1177/00375497221097128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and simulation are important tools for efficient product development. There is a growing need for collaboration, interdisciplinary simulation, and re-usability of simulation models. This usually requires simulation tools to be coupled together for co-simulation. However, the usefulness of co-simulation is often limited by poor performance and numerical instability. Achieving stability is especially hard for stiff mechanical couplings. A suitable method is to use transmission line modeling (TLM), which separates submodels using physically motivated time delays. The most established standard for tool coupling today is the Functional Mock-up Interface (FMI). Two example models in one dimension and three dimensions are used to demonstrate how the next version of FMI for co-simulation can be used in conjunction with TLM. The stability properties of TLM are also proven by numerical analysis. Results show that numerical stability can be ensured without compromising on performance. With the current FMI standard, this requires tailor-made models and custom solutions for the interpolation of input variables. Without using custom solutions, variables must be exchanged using sampled communication and extrapolation. In this case, stability properties can be improved by reducing communication step size. However, it is shown that stability cannot be achieved even when using unacceptably small communication steps. This motivates the need for the next version of FMI to include an intermediate update mode, where variables can be interchanged in between communication points. It is suggested that the FMI standard should be extended with optional callback functions for providing intermediate output variables and requesting intermediate input variables.\",\"PeriodicalId\":49516,\"journal\":{\"name\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"volume\":\"142 1\",\"pages\":\"1057 - 1070\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497221097128\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation-Transactions of the Society for Modeling and Simulation International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497221097128","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Numerically robust co-simulation using transmission line modeling and the Functional Mock-up Interface
Modeling and simulation are important tools for efficient product development. There is a growing need for collaboration, interdisciplinary simulation, and re-usability of simulation models. This usually requires simulation tools to be coupled together for co-simulation. However, the usefulness of co-simulation is often limited by poor performance and numerical instability. Achieving stability is especially hard for stiff mechanical couplings. A suitable method is to use transmission line modeling (TLM), which separates submodels using physically motivated time delays. The most established standard for tool coupling today is the Functional Mock-up Interface (FMI). Two example models in one dimension and three dimensions are used to demonstrate how the next version of FMI for co-simulation can be used in conjunction with TLM. The stability properties of TLM are also proven by numerical analysis. Results show that numerical stability can be ensured without compromising on performance. With the current FMI standard, this requires tailor-made models and custom solutions for the interpolation of input variables. Without using custom solutions, variables must be exchanged using sampled communication and extrapolation. In this case, stability properties can be improved by reducing communication step size. However, it is shown that stability cannot be achieved even when using unacceptably small communication steps. This motivates the need for the next version of FMI to include an intermediate update mode, where variables can be interchanged in between communication points. It is suggested that the FMI standard should be extended with optional callback functions for providing intermediate output variables and requesting intermediate input variables.
期刊介绍:
SIMULATION is a peer-reviewed journal, which covers subjects including the modelling and simulation of: computer networking and communications, high performance computers, real-time systems, mobile and intelligent agents, simulation software, and language design, system engineering and design, aerospace, traffic systems, microelectronics, robotics, mechatronics, and air traffic and chemistry, physics, biology, medicine, biomedicine, sociology, and cognition.