{"title":"(2)和(2)的赋范集","authors":"Sung Guen Kim","doi":"10.31926/but.mif.2022.2.64.2.10","DOIUrl":null,"url":null,"abstract":"Let n ∈ N. An element (x1, . . . , xn) ∈ E n is called a norming point of T ∈ ℒ ( nE) if ∥x1∥ = · · · = ∥xn∥ = 1 and |T(x1, . . . , xn)| = ∥T∥, where ℒ( nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ ( nE), we define Norm(T) = { n (x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T } . Norm(T) is called the norming set of T. We classify Norm(T) for every T ∈ ℒ ( 2ℓ12) or ℒs ( 2ℓ13), where ℓ1n = ℝn with the ℓ1-norm.","PeriodicalId":53266,"journal":{"name":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","volume":"296 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The norming sets of ℒ( 2ℓ1 2) and ℒS( 2ℓ1 3)\",\"authors\":\"Sung Guen Kim\",\"doi\":\"10.31926/but.mif.2022.2.64.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let n ∈ N. An element (x1, . . . , xn) ∈ E n is called a norming point of T ∈ ℒ ( nE) if ∥x1∥ = · · · = ∥xn∥ = 1 and |T(x1, . . . , xn)| = ∥T∥, where ℒ( nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ ( nE), we define Norm(T) = { n (x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T } . Norm(T) is called the norming set of T. We classify Norm(T) for every T ∈ ℒ ( 2ℓ12) or ℒs ( 2ℓ13), where ℓ1n = ℝn with the ℓ1-norm.\",\"PeriodicalId\":53266,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"volume\":\"296 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2022.2.64.2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2022.2.64.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let n ∈ N. An element (x1, . . . , xn) ∈ E n is called a norming point of T ∈ ℒ ( nE) if ∥x1∥ = · · · = ∥xn∥ = 1 and |T(x1, . . . , xn)| = ∥T∥, where ℒ( nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ ( nE), we define Norm(T) = { n (x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T } . Norm(T) is called the norming set of T. We classify Norm(T) for every T ∈ ℒ ( 2ℓ12) or ℒs ( 2ℓ13), where ℓ1n = ℝn with the ℓ1-norm.