(2)和(2)的赋范集

Sung Guen Kim
{"title":"(2)和(2)的赋范集","authors":"Sung Guen Kim","doi":"10.31926/but.mif.2022.2.64.2.10","DOIUrl":null,"url":null,"abstract":"Let n ∈ N. An element (x1, . . . , xn) ∈ E n is called a norming point of T ∈ ℒ ( nE) if ∥x1∥ = · · · = ∥xn∥ = 1 and |T(x1, . . . , xn)| = ∥T∥, where ℒ( nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ ( nE), we define Norm(T) = { n (x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T } . Norm(T) is called the norming set of T. We classify Norm(T) for every T ∈ ℒ ( 2ℓ12) or ℒs ( 2ℓ13), where ℓ1n = ℝn with the ℓ1-norm.","PeriodicalId":53266,"journal":{"name":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","volume":"296 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The norming sets of ℒ( 2ℓ1 2) and ℒS( 2ℓ1 3)\",\"authors\":\"Sung Guen Kim\",\"doi\":\"10.31926/but.mif.2022.2.64.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let n ∈ N. An element (x1, . . . , xn) ∈ E n is called a norming point of T ∈ ℒ ( nE) if ∥x1∥ = · · · = ∥xn∥ = 1 and |T(x1, . . . , xn)| = ∥T∥, where ℒ( nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ ( nE), we define Norm(T) = { n (x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T } . Norm(T) is called the norming set of T. We classify Norm(T) for every T ∈ ℒ ( 2ℓ12) or ℒs ( 2ℓ13), where ℓ1n = ℝn with the ℓ1-norm.\",\"PeriodicalId\":53266,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"volume\":\"296 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2022.2.64.2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2022.2.64.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设n∈n。一个元素(x1,…如果∥x1∥=···=∥xn∥= 1且|T(x1,…),则称T∈f (nE)的赋范点。, xn)| =∥T∥,其中∑(nE)表示e上所有连续n-线性形式的空间。对于T∈∑(nE),我们定义∑(T) = {n (x1,…, xn)∈En:(x1,…xn)是一个规范化的T} .Norm (T)称为规范化的T分类标准(T)为每个T∈ℒ(2ℓ12)或ℒ年代(2ℓ13),在ℓ1 n =ℝnℓ1-norm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The norming sets of ℒ( 2ℓ1 2) and ℒS( 2ℓ1 3)
Let n ∈ N. An element (x1, . . . , xn) ∈ E n is called a norming point of T ∈ ℒ ( nE) if ∥x1∥ = · · · = ∥xn∥ = 1 and |T(x1, . . . , xn)| = ∥T∥, where ℒ( nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ ( nE), we define Norm(T) = { n (x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T } . Norm(T) is called the norming set of T. We classify Norm(T) for every T ∈ ℒ ( 2ℓ12) or ℒs ( 2ℓ13), where ℓ1n = ℝn with the ℓ1-norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信