Manasi Taiwadekarr, D. Kadekar, Sonal Rangole, Nikhat Khan, V. Kale, L. Limaye
{"title":"脐带血AB血浆培养及超低温保存脐带血MSCs","authors":"Manasi Taiwadekarr, D. Kadekar, Sonal Rangole, Nikhat Khan, V. Kale, L. Limaye","doi":"10.4103/2349-3666.240999","DOIUrl":null,"url":null,"abstract":"Neonatal tissues, cord and placenta, are explored as alternate sources of mesenchymal stem cells (MSCs) for their therapeutic applications. Conventionally, MSCs isolated from cord tissues are maintained and propagated in FBS containing medium for promotion of growth and survival of cells. However, for therapeutic use, FBS use is not encouraged as it is of animal origin. Thus, there is a need for replacement of FBS by equally potent and clinically acceptable cost effective sources. The current study is designed to compare the effect of cord blood plasma (CBP) with MSC qualified FBS (M FBS) during culture and cryopreservation of MSCs. MSCs were isolated from cord and placenta and propagated in either M FBS or CBP. The efficiency of the cultures was analyzed by growth curve, morphology, phenotype and functionality. The cryo-protective role of the CBP was evaluated by using it in freezing medium of MSCs. Our data showed that CBP is equivalent to M FBS for culturing placental MSCs with respect to the phenotype, proliferation rate and differentiation to various lineages. However, cord MSCs displayed slow growth rate and reduction in surface expression of CD105 marker in CBP, whereas, the other parameters were comparable. Freezing of MSCs with CBP resulted in reduction of the late apoptotic and necrotic population. Thus, CBP imparts superior protection against cryogenic insults, and appears to be a valuable substitute to M FBS for cultivation and freezing of MSCs.","PeriodicalId":34293,"journal":{"name":"Biomedical Research Journal","volume":"1 1","pages":"126 - 136"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cultivation and cryopreservation of cord tissue MSCs with Cord Blood AB Plasma\",\"authors\":\"Manasi Taiwadekarr, D. Kadekar, Sonal Rangole, Nikhat Khan, V. Kale, L. Limaye\",\"doi\":\"10.4103/2349-3666.240999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neonatal tissues, cord and placenta, are explored as alternate sources of mesenchymal stem cells (MSCs) for their therapeutic applications. Conventionally, MSCs isolated from cord tissues are maintained and propagated in FBS containing medium for promotion of growth and survival of cells. However, for therapeutic use, FBS use is not encouraged as it is of animal origin. Thus, there is a need for replacement of FBS by equally potent and clinically acceptable cost effective sources. The current study is designed to compare the effect of cord blood plasma (CBP) with MSC qualified FBS (M FBS) during culture and cryopreservation of MSCs. MSCs were isolated from cord and placenta and propagated in either M FBS or CBP. The efficiency of the cultures was analyzed by growth curve, morphology, phenotype and functionality. The cryo-protective role of the CBP was evaluated by using it in freezing medium of MSCs. Our data showed that CBP is equivalent to M FBS for culturing placental MSCs with respect to the phenotype, proliferation rate and differentiation to various lineages. However, cord MSCs displayed slow growth rate and reduction in surface expression of CD105 marker in CBP, whereas, the other parameters were comparable. Freezing of MSCs with CBP resulted in reduction of the late apoptotic and necrotic population. Thus, CBP imparts superior protection against cryogenic insults, and appears to be a valuable substitute to M FBS for cultivation and freezing of MSCs.\",\"PeriodicalId\":34293,\"journal\":{\"name\":\"Biomedical Research Journal\",\"volume\":\"1 1\",\"pages\":\"126 - 136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2349-3666.240999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2349-3666.240999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cultivation and cryopreservation of cord tissue MSCs with Cord Blood AB Plasma
Neonatal tissues, cord and placenta, are explored as alternate sources of mesenchymal stem cells (MSCs) for their therapeutic applications. Conventionally, MSCs isolated from cord tissues are maintained and propagated in FBS containing medium for promotion of growth and survival of cells. However, for therapeutic use, FBS use is not encouraged as it is of animal origin. Thus, there is a need for replacement of FBS by equally potent and clinically acceptable cost effective sources. The current study is designed to compare the effect of cord blood plasma (CBP) with MSC qualified FBS (M FBS) during culture and cryopreservation of MSCs. MSCs were isolated from cord and placenta and propagated in either M FBS or CBP. The efficiency of the cultures was analyzed by growth curve, morphology, phenotype and functionality. The cryo-protective role of the CBP was evaluated by using it in freezing medium of MSCs. Our data showed that CBP is equivalent to M FBS for culturing placental MSCs with respect to the phenotype, proliferation rate and differentiation to various lineages. However, cord MSCs displayed slow growth rate and reduction in surface expression of CD105 marker in CBP, whereas, the other parameters were comparable. Freezing of MSCs with CBP resulted in reduction of the late apoptotic and necrotic population. Thus, CBP imparts superior protection against cryogenic insults, and appears to be a valuable substitute to M FBS for cultivation and freezing of MSCs.