av-bvi-i三元体系:相平衡综述

Z. Aliev
{"title":"av-bvi-i三元体系:相平衡综述","authors":"Z. Aliev","doi":"10.17308/kcmf.2019.21/1149","DOIUrl":null,"url":null,"abstract":"This paper presents a brief review on the ternary phase equilibria in the ternary AV–BVI–I systems (AV = Sb, Bi; BVI = S, Se, Te). These systems includes the series of ternary compounds those are very attractive source materials for photo-, thermos- and ferroelectric energy transformation along the recently discovered semiconductors that exhibit Rashba-type spin splitting in their surface states. In the Rashba semiconductors, a unique toroidal 3D Fermi surface appears on the crystal surface, which leads to unusual properties that make it possible to realize unique electronic devices based on these compounds. The thorough knowledge on the ternary phase diagram of these systems shed light on the chemical and structural design of new multifunctional materials with tunable properties. This knowledge is very important whenfocusing on the chemistry of such multifunctional materials based on complex element systems. \n  \n  \n  \nREFERENCES \n \nAudzijonis A., Sereika R., Ћaltauskas R. Antiferroelectric phase transition in SbSI and SbSeI crystals. Solid State Commun., 2008, v. 147(3–4), pp. 88–89.  \nhttps://doi.org/10.1016/j.ssc.2008.05.008 \n \n Łukaszewicz K., Pietraszko A., Kucharska M. Diffuse Scattering, Short Range Order and Nanodomains in the Paraelectric SbSI. Ferroelectrics, 2008, v. 375(1), pp.170–177. https://doi.org/1080/00150190802438033 \nAudzijonis A., Gaigalas G., Ţigas L., Sereika R., Ţaltauskas R., Balnionis D., Rëza A. Electronic structure and optical properties of BiSeI crystal. Phys. Status Solidi B, 2009, v. 246(7), pp. 1702–1708.  https://doi.org/10.1002/pssb.200945110 \nAudzijonis A., Zaltauskas R., Sereika R., Zigas L., Reza A. Electronic structure and optical properties of BiSI crystal. J. Phys. Chem. Solids. 2010, v. 71(6), pp. 884-891. https://doi.org/10.1016/j.jpcs.2010.03.042 \nGanose A. M., Butler K. T., Walsh A., Scanlon D. O. Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A, 2016, v. 4(6), pp. 2060-2068.  https://doi.org/10.1039/c5ta09612j \nGerzanich E.I., Fridkin V.M. Ferroelectric materials of type AVBVICVII. Moscow, Nauka Publ., 1982. (in Russ.) \nPierrefeu A., Steigmeier E. F., Dorner B. Inelastic neutron scattering in SbSI near the ferroelectric phase transformation. Phys. Status Solidi B, 1977, v. 80(1), pp. 167–171. https://doi.org/10.1002/pssb.2220800119 \nŽičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B, 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 \nRao K. K., Chaplot S. L. Dynamics of Paraelectric and Ferroelectric SbSI. Phys. Status Solidi B, 1985, v. 129(2), pp. 471–482. https://doi.org/10.1002/pssb.2221290204 \nGrigas J., Talik E., Lazauskas V. Splitting of the XPS in ferroelectric SbSI crystals. Ferroelectrics, 2003, v. 284(1), pp. 147–160. https://doi.org/10.1080/00150190390204790 \nAudzijonis A., Ћaltauskas R., Ћigas L., Vinokurova I. V., Farberovich O. V., Pauliukas A., Kvedaravičius A. Variation of the energy gap of the SbSI crystals at ferroelectric phase transition. Physica B, 2006, v. 371(1), pp. 68–73. https://doi.org/10.1016/j.physb.2005. 09.039 \nNowak M., Nowrot A., Szperlich P., Jesionek M., Kępińska M., Starczewska A., Mistewicz K., Stróż D., Szala J., Rzychoń T., Talik E., Wrzalik R. Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A, 2014, v. 210, pp. 119–130. https://doi.org/10.1016/j.sna.2014.02.012 \nIshizaka K., Bahramy M. S., Murakawa H., Sakano M., Shimojima T., Sonobe T., Koizumi K., Shin S., Miyahara H., Kimura A., Miyamoto K., Okuda T., Namatame H., Taniguchi M., Arita R., Nagaosa N., Kobayashi K., Murakami Y., Kumai R., Kaneko Y., Onose Y., Tokura Y. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater., 2011, v. 10(7), pp. 521–526. https://doi.org/10.1038/nmat3051 \nLandolt G., Eremeev S. V., Koroteev Yu. M., Slomski B., Muff S., Neupert T., Kobayashi M., Strocov V. N., Schmitt T., Aliev Z. S., Babanly M. B., Amiraslanov I. R., Chulkov E. V., Osterwalder J., Dil J. H. Phys. Rev. Lett., 2012, v. 109(11), p. 116403. https://doi.org/10.1103/physrevlett.109.116403 \nBahramy M. S., Yang B.-J., Arita R., Nagaosa N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Commun., 2012, v. 3(1), p. 679. https://doi.org/10.1038/ncomms1679 \nLandolt G., Eremeev S. V., Tereshchenko O. E., Muff S., Slomski B., Kokh K. A., Kobayashi M., Schmitt T., Strocov V. N., Osterwalder J., Chulkov E. V., Dil J. H. Bulk and surface Rashba splitting in single termination BiTeCl. New J. Phys., 2013, v. 15(8), p. 085022. https://doi.org/10.1088/1367-2630/15/8/085022 \nFiedler S., Bathon T., Eremeev S. V., Tereshchenko O. E., Kokh K. A., Chulkov E. V., Sessi P., Bentmann H., Bode M., Reinert F. Termination-dependent surface properties in the giant-Rashba semiconducto rsBiTeX(X=Cl, Br, I). Phys. Rev. B., 2015, v. 92(23), p. 235430. https://doi.org/10.1103/physrevb.92.235430 \nBahramy M. S., Ogawa N. Bulk Rashba semiconductors and related quantum phenomena. Adv. Mater., 2017, v. 29(25), p. 1605911. https://doi.org/10.1002/adma.201605911 \nGottstein G. Physical Foundations of Materials Science. Springer-Verlag Berlin Heidelberg, XIV, 2004, 502 p. \nBabanly M. B., Chulkov E. V., Aliev Z. S., Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russ. J. Inorg. Chem., 2017, v. 62(13), pp. 1703–1729. https://doi.org/10.1134/s0036023617130034 \nŽičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B., 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 \nBelyayev L. M., Lyakhovitskaya V. A., Netesov G. B., Mokhosoev M.V., Aleykina S.M. Synthesis and crystallization of antimony sulfoiodide. Izv. Akad. Nauk, Neorg. Mater., 1965, v. 1(12), pp. 2178–2181. (in Russ.) \nRyazantsev A. A., Varekha L. M., Popovkin B. A., Lyakhovitskaya V. A., Novoselova A. V. Р–T–x phase diagram of the SbI3–Sb2S3 system. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(7), pp. 1296–1297 (in Russ.) \nAliev Z. S., Musayeva S. S., Babanly M. B. The phase relationships in the Sb–S–I system and thermodynamic properties of the SbSI. J. Phase Equilib. Diffus., 2017, v. 38, pp. 887–896. https://doi.org/10.1007/s11669-017-0601-4 \nLukaszewicz K., Pietraszko A., Stepen’ Damm Yu., Kajokas A. Crystal structure and phase transitions of the ferroelectric antimony sulfoiodide SbSI. Part II. Crystal structure of SbSI in phases I, II and III. Pol. J. Chem., 1997, v. 71, pp. 1852–1857. \nItoh K., Matsunaga H. A study of the crystal structure in ferroelectric SbSI. Zeitschrift für Krist., 1980, v. 152(3-4), p. 309–315. https://doi.org/10.1524/zkri.1980.152.3-4.309 \nAliev Z. S., Musaeva S. S., Babanly D. M., Shevelkov A. V., Babanly M. B. Phase diagram of the Sb–Se–I system and thermodynamic properties of SbSeI. J. Alloys Compd., 2010, v. 505(2), pp. 450–455. https://doi.org/10.1016/j.jallcom.2010.06.103 \nBelotskiy D. P., Lapshin V. F., Boychuk R. F., Novalkovskiy N. P. The Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1972, v. 8(3), pp. 572–574. (in Russ.) \nDolgikh V. A., Popovkin B. A., Odin I. N., Novoselova A. V. Р–Т–х phase diagram of the Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(6), pp. 919–922. (in Russ.) \nRodionov Yu. I., Klokman V. V., Myakishev K. G. The solubility of semiconductor compounds AIIBVI, AIVBIV and AVBVI in halide melts. Russ. J. Inorg. Chem., 1973, v. 17(3), pp. 846–849. (in Russ.) \nChervenyuk G. I., Niyger F. V., Belotskiy D. P., Novalkovskiy N. P. Investigation of the phase equilibria in the SbSI–Sb, SbSI–S, SbSI–I systems. Izv. Akad. Nauk, Neorg. Mater., 1977, v. 13(6), pp. 989–991. (in Russ.) \nAliev Z. S., Babanly M. B., Babanly D. M., Shevelkov A. V., Tedenac J. C. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI. Int. J. Mat. Res., 2012, v. 103(3), pp. 290–295. https://doi.org/10.3139/146.110646 \nBelotskiy D. P., Antipov I. N., Nadtochiy V. F., Dodik S.M. Physicochemical investigations of the PbI2–SnI2, CdI2–ZnI2, BiI3–SbI3, Sb2Te3–SbI3, Bi2Te3–BiI3 systems. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(10), pp. 1663–1667. (in Russ.) \nBelotskiy D. P., Dodik S. M., Antipov I. N., Nefedov Z. I. Synthesis and investigation of the telluroiodides of antimony and bismuth. Ukr. Chem. J., 1970, v. 36, pp. 897–900. (in Russ.) \nAleshin V. A., Valitova N. R., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the antimony iodide system – antimony telluride. Izv. Akad. Nauk, Zhur. Fiz. Khim., 1974, v. 48, p. 2395. (in Russ.) \nValitova N. R., Popovkin B. A., Novoselova A. V., Aslanov L. A. The compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9, pp. 2222–2223. (in Russ.) \nTuryanitsa I. D., Olekseyuk I. D., Kozmanko I. I. Investigation of the Sb2Te3–SbI3 system and properties of the compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(8), pp. 433–1434. (in Russ.) \nVoutsas G. P., Rentzeperis P. J. The crystal structure of antimony selenoiodide, SbSeI. Zeitschrift für Kristallographie, 1983, v. 161(1–2), pp. 111–118. https://doi.org/10.1524/zkri.1982.161.1-2.111 \nKikuchi A., Oka Y., Sawaguchi E. Crystal Structure Determination of SbSI. J. Phys. Soc. Jap., 1967, v. 23(2), pp. 337–354. https://doi.org/10.1143/jpsj.23.337 \nKichambare P., Sharon M. Preparation, characterization and physical properties of mixed Sb1–xBixTeI. Solid State Ionics, 1997, v. 101–103, pp. 155–159. https://doi.org/10.1016/s0167-2738(97)84024-6 \nShevelkov A. V., Dikarev E. V., Shpanchenko R. V., Popovkin B.A. Crystal structures of bismuth tellurohalides BiTeX (X = Cl, Br, I) from X-ray powder diffraction data. J. Solid State Chem., 1995, v. 114(2), pp. 379–395. https://doi.org/10.1006/jssc.1995.1058 \nAliev Z. S., Jafarov Y. I., Jafarli F. Y., Shevelkov A. V., Babanly M. B. The phase equilib","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"THE AV–BVI–I TERNARY SYSTEMS: A BRIEF REVIEW ON THE PHASE EQUILIBRIA REVIEW\",\"authors\":\"Z. Aliev\",\"doi\":\"10.17308/kcmf.2019.21/1149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a brief review on the ternary phase equilibria in the ternary AV–BVI–I systems (AV = Sb, Bi; BVI = S, Se, Te). These systems includes the series of ternary compounds those are very attractive source materials for photo-, thermos- and ferroelectric energy transformation along the recently discovered semiconductors that exhibit Rashba-type spin splitting in their surface states. In the Rashba semiconductors, a unique toroidal 3D Fermi surface appears on the crystal surface, which leads to unusual properties that make it possible to realize unique electronic devices based on these compounds. The thorough knowledge on the ternary phase diagram of these systems shed light on the chemical and structural design of new multifunctional materials with tunable properties. This knowledge is very important whenfocusing on the chemistry of such multifunctional materials based on complex element systems. \\n  \\n  \\n  \\nREFERENCES \\n \\nAudzijonis A., Sereika R., Ћaltauskas R. Antiferroelectric phase transition in SbSI and SbSeI crystals. Solid State Commun., 2008, v. 147(3–4), pp. 88–89.  \\nhttps://doi.org/10.1016/j.ssc.2008.05.008 \\n \\n Łukaszewicz K., Pietraszko A., Kucharska M. Diffuse Scattering, Short Range Order and Nanodomains in the Paraelectric SbSI. Ferroelectrics, 2008, v. 375(1), pp.170–177. https://doi.org/1080/00150190802438033 \\nAudzijonis A., Gaigalas G., Ţigas L., Sereika R., Ţaltauskas R., Balnionis D., Rëza A. Electronic structure and optical properties of BiSeI crystal. Phys. Status Solidi B, 2009, v. 246(7), pp. 1702–1708.  https://doi.org/10.1002/pssb.200945110 \\nAudzijonis A., Zaltauskas R., Sereika R., Zigas L., Reza A. Electronic structure and optical properties of BiSI crystal. J. Phys. Chem. Solids. 2010, v. 71(6), pp. 884-891. https://doi.org/10.1016/j.jpcs.2010.03.042 \\nGanose A. M., Butler K. T., Walsh A., Scanlon D. O. Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A, 2016, v. 4(6), pp. 2060-2068.  https://doi.org/10.1039/c5ta09612j \\nGerzanich E.I., Fridkin V.M. Ferroelectric materials of type AVBVICVII. Moscow, Nauka Publ., 1982. (in Russ.) \\nPierrefeu A., Steigmeier E. F., Dorner B. Inelastic neutron scattering in SbSI near the ferroelectric phase transformation. Phys. Status Solidi B, 1977, v. 80(1), pp. 167–171. https://doi.org/10.1002/pssb.2220800119 \\nŽičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B, 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 \\nRao K. K., Chaplot S. L. Dynamics of Paraelectric and Ferroelectric SbSI. Phys. Status Solidi B, 1985, v. 129(2), pp. 471–482. https://doi.org/10.1002/pssb.2221290204 \\nGrigas J., Talik E., Lazauskas V. Splitting of the XPS in ferroelectric SbSI crystals. Ferroelectrics, 2003, v. 284(1), pp. 147–160. https://doi.org/10.1080/00150190390204790 \\nAudzijonis A., Ћaltauskas R., Ћigas L., Vinokurova I. V., Farberovich O. V., Pauliukas A., Kvedaravičius A. Variation of the energy gap of the SbSI crystals at ferroelectric phase transition. Physica B, 2006, v. 371(1), pp. 68–73. https://doi.org/10.1016/j.physb.2005. 09.039 \\nNowak M., Nowrot A., Szperlich P., Jesionek M., Kępińska M., Starczewska A., Mistewicz K., Stróż D., Szala J., Rzychoń T., Talik E., Wrzalik R. Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A, 2014, v. 210, pp. 119–130. https://doi.org/10.1016/j.sna.2014.02.012 \\nIshizaka K., Bahramy M. S., Murakawa H., Sakano M., Shimojima T., Sonobe T., Koizumi K., Shin S., Miyahara H., Kimura A., Miyamoto K., Okuda T., Namatame H., Taniguchi M., Arita R., Nagaosa N., Kobayashi K., Murakami Y., Kumai R., Kaneko Y., Onose Y., Tokura Y. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater., 2011, v. 10(7), pp. 521–526. https://doi.org/10.1038/nmat3051 \\nLandolt G., Eremeev S. V., Koroteev Yu. M., Slomski B., Muff S., Neupert T., Kobayashi M., Strocov V. N., Schmitt T., Aliev Z. S., Babanly M. B., Amiraslanov I. R., Chulkov E. V., Osterwalder J., Dil J. H. Phys. Rev. Lett., 2012, v. 109(11), p. 116403. https://doi.org/10.1103/physrevlett.109.116403 \\nBahramy M. S., Yang B.-J., Arita R., Nagaosa N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Commun., 2012, v. 3(1), p. 679. https://doi.org/10.1038/ncomms1679 \\nLandolt G., Eremeev S. V., Tereshchenko O. E., Muff S., Slomski B., Kokh K. A., Kobayashi M., Schmitt T., Strocov V. N., Osterwalder J., Chulkov E. V., Dil J. H. Bulk and surface Rashba splitting in single termination BiTeCl. New J. Phys., 2013, v. 15(8), p. 085022. https://doi.org/10.1088/1367-2630/15/8/085022 \\nFiedler S., Bathon T., Eremeev S. V., Tereshchenko O. E., Kokh K. A., Chulkov E. V., Sessi P., Bentmann H., Bode M., Reinert F. Termination-dependent surface properties in the giant-Rashba semiconducto rsBiTeX(X=Cl, Br, I). Phys. Rev. B., 2015, v. 92(23), p. 235430. https://doi.org/10.1103/physrevb.92.235430 \\nBahramy M. S., Ogawa N. Bulk Rashba semiconductors and related quantum phenomena. Adv. Mater., 2017, v. 29(25), p. 1605911. https://doi.org/10.1002/adma.201605911 \\nGottstein G. Physical Foundations of Materials Science. Springer-Verlag Berlin Heidelberg, XIV, 2004, 502 p. \\nBabanly M. B., Chulkov E. V., Aliev Z. S., Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russ. J. Inorg. Chem., 2017, v. 62(13), pp. 1703–1729. https://doi.org/10.1134/s0036023617130034 \\nŽičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B., 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 \\nBelyayev L. M., Lyakhovitskaya V. A., Netesov G. B., Mokhosoev M.V., Aleykina S.M. Synthesis and crystallization of antimony sulfoiodide. Izv. Akad. Nauk, Neorg. Mater., 1965, v. 1(12), pp. 2178–2181. (in Russ.) \\nRyazantsev A. A., Varekha L. M., Popovkin B. A., Lyakhovitskaya V. A., Novoselova A. V. Р–T–x phase diagram of the SbI3–Sb2S3 system. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(7), pp. 1296–1297 (in Russ.) \\nAliev Z. S., Musayeva S. S., Babanly M. B. The phase relationships in the Sb–S–I system and thermodynamic properties of the SbSI. J. Phase Equilib. Diffus., 2017, v. 38, pp. 887–896. https://doi.org/10.1007/s11669-017-0601-4 \\nLukaszewicz K., Pietraszko A., Stepen’ Damm Yu., Kajokas A. Crystal structure and phase transitions of the ferroelectric antimony sulfoiodide SbSI. Part II. Crystal structure of SbSI in phases I, II and III. Pol. J. Chem., 1997, v. 71, pp. 1852–1857. \\nItoh K., Matsunaga H. A study of the crystal structure in ferroelectric SbSI. Zeitschrift für Krist., 1980, v. 152(3-4), p. 309–315. https://doi.org/10.1524/zkri.1980.152.3-4.309 \\nAliev Z. S., Musaeva S. S., Babanly D. M., Shevelkov A. V., Babanly M. B. Phase diagram of the Sb–Se–I system and thermodynamic properties of SbSeI. J. Alloys Compd., 2010, v. 505(2), pp. 450–455. https://doi.org/10.1016/j.jallcom.2010.06.103 \\nBelotskiy D. P., Lapshin V. F., Boychuk R. F., Novalkovskiy N. P. The Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1972, v. 8(3), pp. 572–574. (in Russ.) \\nDolgikh V. A., Popovkin B. A., Odin I. N., Novoselova A. V. Р–Т–х phase diagram of the Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(6), pp. 919–922. (in Russ.) \\nRodionov Yu. I., Klokman V. V., Myakishev K. G. The solubility of semiconductor compounds AIIBVI, AIVBIV and AVBVI in halide melts. Russ. J. Inorg. Chem., 1973, v. 17(3), pp. 846–849. (in Russ.) \\nChervenyuk G. I., Niyger F. V., Belotskiy D. P., Novalkovskiy N. P. Investigation of the phase equilibria in the SbSI–Sb, SbSI–S, SbSI–I systems. Izv. Akad. Nauk, Neorg. Mater., 1977, v. 13(6), pp. 989–991. (in Russ.) \\nAliev Z. S., Babanly M. B., Babanly D. M., Shevelkov A. V., Tedenac J. C. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI. Int. J. Mat. Res., 2012, v. 103(3), pp. 290–295. https://doi.org/10.3139/146.110646 \\nBelotskiy D. P., Antipov I. N., Nadtochiy V. F., Dodik S.M. Physicochemical investigations of the PbI2–SnI2, CdI2–ZnI2, BiI3–SbI3, Sb2Te3–SbI3, Bi2Te3–BiI3 systems. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(10), pp. 1663–1667. (in Russ.) \\nBelotskiy D. P., Dodik S. M., Antipov I. N., Nefedov Z. I. Synthesis and investigation of the telluroiodides of antimony and bismuth. Ukr. Chem. J., 1970, v. 36, pp. 897–900. (in Russ.) \\nAleshin V. A., Valitova N. R., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the antimony iodide system – antimony telluride. Izv. Akad. Nauk, Zhur. Fiz. Khim., 1974, v. 48, p. 2395. (in Russ.) \\nValitova N. R., Popovkin B. A., Novoselova A. V., Aslanov L. A. The compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9, pp. 2222–2223. (in Russ.) \\nTuryanitsa I. D., Olekseyuk I. D., Kozmanko I. I. Investigation of the Sb2Te3–SbI3 system and properties of the compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(8), pp. 433–1434. (in Russ.) \\nVoutsas G. P., Rentzeperis P. J. The crystal structure of antimony selenoiodide, SbSeI. Zeitschrift für Kristallographie, 1983, v. 161(1–2), pp. 111–118. https://doi.org/10.1524/zkri.1982.161.1-2.111 \\nKikuchi A., Oka Y., Sawaguchi E. Crystal Structure Determination of SbSI. J. Phys. Soc. Jap., 1967, v. 23(2), pp. 337–354. https://doi.org/10.1143/jpsj.23.337 \\nKichambare P., Sharon M. Preparation, characterization and physical properties of mixed Sb1–xBixTeI. Solid State Ionics, 1997, v. 101–103, pp. 155–159. https://doi.org/10.1016/s0167-2738(97)84024-6 \\nShevelkov A. V., Dikarev E. V., Shpanchenko R. V., Popovkin B.A. Crystal structures of bismuth tellurohalides BiTeX (X = Cl, Br, I) from X-ray powder diffraction data. J. Solid State Chem., 1995, v. 114(2), pp. 379–395. https://doi.org/10.1006/jssc.1995.1058 \\nAliev Z. S., Jafarov Y. I., Jafarli F. Y., Shevelkov A. V., Babanly M. B. The phase equilib\",\"PeriodicalId\":17879,\"journal\":{\"name\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17308/kcmf.2019.21/1149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2019.21/1149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文综述了三元AV - bvi - i体系(AV = Sb, Bi;BVI = S, Se, Te)。这些体系包括一系列三元化合物,它们是非常有吸引力的光电、热电和铁电能量转换的源材料,沿着最近发现的在表面状态下表现出rashba型自旋分裂的半导体。在Rashba半导体中,一个独特的环形3D费米表面出现在晶体表面,这导致了不同寻常的特性,使基于这些化合物的独特电子设备成为可能。对这些系统的三元相图的深入了解揭示了具有可调性能的新型多功能材料的化学和结构设计。当关注基于复杂元素系统的多功能材料的化学时,这些知识是非常重要的。参考文献Audzijonis A, Sereika R., Ћaltauskas R. SbSI和SbSeI晶体的反铁电相变。固态公共。, 2008, v. 147(3-4), pp. 88-89。https://doi.org/10.1016/j.ssc.2008.05.008 Łukaszewicz K, Pietraszko A, Kucharska M.准电SbSI的散射、近程阶和纳米畴。铁电学,2008,vol . 37 (1), pp.170-177。https://doi.org/1080/00150190802438033 Audzijonis A, Gaigalas G, Ţigas L, Sereika R, Ţaltauskas R, Balnionis D, Rëza A. BiSeI晶体的电子结构与光学性质。理论物理。固体材料学报,2009,vol . 246(7), pp. 1702-1708。https://doi.org/10.1002/pssb.200945110 Audzijonis A, Zaltauskas R, Sereika R, Zigas L, Reza A. BiSI晶体的电子结构和光学性质。期刊。化学。固体。2010,vol . 71(6), pp. 884-891。https://doi.org/10.1016/j.jpcs.2010.03.042 Ganose A. M., Butler K. T., Walsh A., Scanlon D. O. BiSI和BiSeI的相对论电子结构和带对准:潜在的光伏材料。j .板牙。化学。植物学报,2016,vol . 4(6), pp. 2060-2068。https://doi.org/10.1039/c5ta09612j Gerzanich e ., Fridkin V.M. AVBVICVII型铁电材料。莫斯科,Nauka pub。, 1982年。(俄国人)。李建军,李建军,李建军,等。铁电相变下SbSI非弹性中子散射。理论物理。固体材料学报,1997,8(1),第167-171页。https://doi.org/10.1002/pssb.2220800119 Žičkus K, Audzijonis A, Batarunas J, Šileika A.铁电SbSI的基本吸收边尾。理论物理。科学通报,2004,vol . 25(2), pp. 645-651。https://doi.org/10.1002/pssb.2221250225饶坤琨,chplot S. L.准电和铁电SbSI动力学。理论物理。土壤科学,1985,vol . 29(2), pp 471-482。https://doi.org/10.1002/pssb.2221290204 Grigas J., talk E., Lazauskas V.。铁电SbSI晶体中XPS的分裂。铁电学,2003,v. 284(1), pp. 147-160。https://doi.org/10.1080/00150190390204790 Audzijonis A, Ћaltauskas R., Ћigas L., Vinokurova I. V., Farberovich O. V., Pauliukas A., kvedaravius A.,铁电相变中SbSI晶体能隙的变化。物理学报,2006,vol . 31 (1), pp. 68-73。https://doi.org/10.1016/j.physb.2005。09.039 Nowak M, Nowrot A, Szperlich P, Jesionek M, Kępińska M, Starczewska A, misstewicz K, Stróż D, Szala J, rzychoka T, Talik E, Wrzalik R.湿度传感器用SbSI凝胶的制备与表征。传感器,2014,vol . 21, pp. 119-130。https://doi.org/10.1016/j.sna.2014.02.012石中K, Bahramy M. S,村川H.,坂野M.,下岛T., Sonobe T.,小泉K., Shin S.,宫原H.,木村A.,宫本K., Okuda T., Namatame H.,谷口M.,有田R.,长尾N.,小林K.,村上Y., Kumai R.,金子y ., Onose Y.,德仓Y.,巨型rashba型自旋分裂体BiTeI。Nat。板牙。, 2011, v. 10(7), pp. 521-526。https://doi.org/10.1038/nmat3051兰多尔特G., Eremeev . S. V.,余罗提耶夫。M., Slomski B., Muff S., Neupert T., Kobayashi M., Strocov V. N., Schmitt T., Aliev Z. S., Babanly M. B., Amiraslanov I. R., Chulkov E. V., Osterwalder J., Dil J. H.物理学。启。, 2012, v. 109(11), p. 116403。https://doi.org/10.1103/physrevlett.109.116403 Bahramy m.s,杨宝杰。李建军,李建军,李建军,等。压力下非中心对称拓扑绝缘相的产生。Commun性质。, 2012, v. 3(1), p. 679。https://doi.org/10.1038/ncomms1679 Landolt G, Eremeev S. V, Tereshchenko O. E, Muff S, Slomski B., Kokh K. A, Kobayashi M., Schmitt T., Strocov V. N, Osterwalder J, Chulkov E. V, Dil J. h。新J.物理学。生态学报,2013,v. 15(8), p. 085022。https://doi.org/10.1088/1367-2630/15/8/085022 Fiedler S., Bathon T., Eremeev S. V, Tereshchenko O. E., Kokh K. A, Chulkov E. V, Sessi P., Bentmann H., Bode M., Reinert F.半导体材料rsBiTeX(X=Cl, Br, I)的表面特性。Rev. B, 2015, v. 92(23), p. 235430。https://doi.org/10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE AV–BVI–I TERNARY SYSTEMS: A BRIEF REVIEW ON THE PHASE EQUILIBRIA REVIEW
This paper presents a brief review on the ternary phase equilibria in the ternary AV–BVI–I systems (AV = Sb, Bi; BVI = S, Se, Te). These systems includes the series of ternary compounds those are very attractive source materials for photo-, thermos- and ferroelectric energy transformation along the recently discovered semiconductors that exhibit Rashba-type spin splitting in their surface states. In the Rashba semiconductors, a unique toroidal 3D Fermi surface appears on the crystal surface, which leads to unusual properties that make it possible to realize unique electronic devices based on these compounds. The thorough knowledge on the ternary phase diagram of these systems shed light on the chemical and structural design of new multifunctional materials with tunable properties. This knowledge is very important whenfocusing on the chemistry of such multifunctional materials based on complex element systems.       REFERENCES Audzijonis A., Sereika R., Ћaltauskas R. Antiferroelectric phase transition in SbSI and SbSeI crystals. Solid State Commun., 2008, v. 147(3–4), pp. 88–89.  https://doi.org/10.1016/j.ssc.2008.05.008  Łukaszewicz K., Pietraszko A., Kucharska M. Diffuse Scattering, Short Range Order and Nanodomains in the Paraelectric SbSI. Ferroelectrics, 2008, v. 375(1), pp.170–177. https://doi.org/1080/00150190802438033 Audzijonis A., Gaigalas G., Ţigas L., Sereika R., Ţaltauskas R., Balnionis D., Rëza A. Electronic structure and optical properties of BiSeI crystal. Phys. Status Solidi B, 2009, v. 246(7), pp. 1702–1708.  https://doi.org/10.1002/pssb.200945110 Audzijonis A., Zaltauskas R., Sereika R., Zigas L., Reza A. Electronic structure and optical properties of BiSI crystal. J. Phys. Chem. Solids. 2010, v. 71(6), pp. 884-891. https://doi.org/10.1016/j.jpcs.2010.03.042 Ganose A. M., Butler K. T., Walsh A., Scanlon D. O. Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A, 2016, v. 4(6), pp. 2060-2068.  https://doi.org/10.1039/c5ta09612j Gerzanich E.I., Fridkin V.M. Ferroelectric materials of type AVBVICVII. Moscow, Nauka Publ., 1982. (in Russ.) Pierrefeu A., Steigmeier E. F., Dorner B. Inelastic neutron scattering in SbSI near the ferroelectric phase transformation. Phys. Status Solidi B, 1977, v. 80(1), pp. 167–171. https://doi.org/10.1002/pssb.2220800119 Žičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B, 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 Rao K. K., Chaplot S. L. Dynamics of Paraelectric and Ferroelectric SbSI. Phys. Status Solidi B, 1985, v. 129(2), pp. 471–482. https://doi.org/10.1002/pssb.2221290204 Grigas J., Talik E., Lazauskas V. Splitting of the XPS in ferroelectric SbSI crystals. Ferroelectrics, 2003, v. 284(1), pp. 147–160. https://doi.org/10.1080/00150190390204790 Audzijonis A., Ћaltauskas R., Ћigas L., Vinokurova I. V., Farberovich O. V., Pauliukas A., Kvedaravičius A. Variation of the energy gap of the SbSI crystals at ferroelectric phase transition. Physica B, 2006, v. 371(1), pp. 68–73. https://doi.org/10.1016/j.physb.2005. 09.039 Nowak M., Nowrot A., Szperlich P., Jesionek M., Kępińska M., Starczewska A., Mistewicz K., Stróż D., Szala J., Rzychoń T., Talik E., Wrzalik R. Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A, 2014, v. 210, pp. 119–130. https://doi.org/10.1016/j.sna.2014.02.012 Ishizaka K., Bahramy M. S., Murakawa H., Sakano M., Shimojima T., Sonobe T., Koizumi K., Shin S., Miyahara H., Kimura A., Miyamoto K., Okuda T., Namatame H., Taniguchi M., Arita R., Nagaosa N., Kobayashi K., Murakami Y., Kumai R., Kaneko Y., Onose Y., Tokura Y. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater., 2011, v. 10(7), pp. 521–526. https://doi.org/10.1038/nmat3051 Landolt G., Eremeev S. V., Koroteev Yu. M., Slomski B., Muff S., Neupert T., Kobayashi M., Strocov V. N., Schmitt T., Aliev Z. S., Babanly M. B., Amiraslanov I. R., Chulkov E. V., Osterwalder J., Dil J. H. Phys. Rev. Lett., 2012, v. 109(11), p. 116403. https://doi.org/10.1103/physrevlett.109.116403 Bahramy M. S., Yang B.-J., Arita R., Nagaosa N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Commun., 2012, v. 3(1), p. 679. https://doi.org/10.1038/ncomms1679 Landolt G., Eremeev S. V., Tereshchenko O. E., Muff S., Slomski B., Kokh K. A., Kobayashi M., Schmitt T., Strocov V. N., Osterwalder J., Chulkov E. V., Dil J. H. Bulk and surface Rashba splitting in single termination BiTeCl. New J. Phys., 2013, v. 15(8), p. 085022. https://doi.org/10.1088/1367-2630/15/8/085022 Fiedler S., Bathon T., Eremeev S. V., Tereshchenko O. E., Kokh K. A., Chulkov E. V., Sessi P., Bentmann H., Bode M., Reinert F. Termination-dependent surface properties in the giant-Rashba semiconducto rsBiTeX(X=Cl, Br, I). Phys. Rev. B., 2015, v. 92(23), p. 235430. https://doi.org/10.1103/physrevb.92.235430 Bahramy M. S., Ogawa N. Bulk Rashba semiconductors and related quantum phenomena. Adv. Mater., 2017, v. 29(25), p. 1605911. https://doi.org/10.1002/adma.201605911 Gottstein G. Physical Foundations of Materials Science. Springer-Verlag Berlin Heidelberg, XIV, 2004, 502 p. Babanly M. B., Chulkov E. V., Aliev Z. S., Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russ. J. Inorg. Chem., 2017, v. 62(13), pp. 1703–1729. https://doi.org/10.1134/s0036023617130034 Žičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B., 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 Belyayev L. M., Lyakhovitskaya V. A., Netesov G. B., Mokhosoev M.V., Aleykina S.M. Synthesis and crystallization of antimony sulfoiodide. Izv. Akad. Nauk, Neorg. Mater., 1965, v. 1(12), pp. 2178–2181. (in Russ.) Ryazantsev A. A., Varekha L. M., Popovkin B. A., Lyakhovitskaya V. A., Novoselova A. V. Р–T–x phase diagram of the SbI3–Sb2S3 system. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(7), pp. 1296–1297 (in Russ.) Aliev Z. S., Musayeva S. S., Babanly M. B. The phase relationships in the Sb–S–I system and thermodynamic properties of the SbSI. J. Phase Equilib. Diffus., 2017, v. 38, pp. 887–896. https://doi.org/10.1007/s11669-017-0601-4 Lukaszewicz K., Pietraszko A., Stepen’ Damm Yu., Kajokas A. Crystal structure and phase transitions of the ferroelectric antimony sulfoiodide SbSI. Part II. Crystal structure of SbSI in phases I, II and III. Pol. J. Chem., 1997, v. 71, pp. 1852–1857. Itoh K., Matsunaga H. A study of the crystal structure in ferroelectric SbSI. Zeitschrift für Krist., 1980, v. 152(3-4), p. 309–315. https://doi.org/10.1524/zkri.1980.152.3-4.309 Aliev Z. S., Musaeva S. S., Babanly D. M., Shevelkov A. V., Babanly M. B. Phase diagram of the Sb–Se–I system and thermodynamic properties of SbSeI. J. Alloys Compd., 2010, v. 505(2), pp. 450–455. https://doi.org/10.1016/j.jallcom.2010.06.103 Belotskiy D. P., Lapshin V. F., Boychuk R. F., Novalkovskiy N. P. The Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1972, v. 8(3), pp. 572–574. (in Russ.) Dolgikh V. A., Popovkin B. A., Odin I. N., Novoselova A. V. Р–Т–х phase diagram of the Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(6), pp. 919–922. (in Russ.) Rodionov Yu. I., Klokman V. V., Myakishev K. G. The solubility of semiconductor compounds AIIBVI, AIVBIV and AVBVI in halide melts. Russ. J. Inorg. Chem., 1973, v. 17(3), pp. 846–849. (in Russ.) Chervenyuk G. I., Niyger F. V., Belotskiy D. P., Novalkovskiy N. P. Investigation of the phase equilibria in the SbSI–Sb, SbSI–S, SbSI–I systems. Izv. Akad. Nauk, Neorg. Mater., 1977, v. 13(6), pp. 989–991. (in Russ.) Aliev Z. S., Babanly M. B., Babanly D. M., Shevelkov A. V., Tedenac J. C. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI. Int. J. Mat. Res., 2012, v. 103(3), pp. 290–295. https://doi.org/10.3139/146.110646 Belotskiy D. P., Antipov I. N., Nadtochiy V. F., Dodik S.M. Physicochemical investigations of the PbI2–SnI2, CdI2–ZnI2, BiI3–SbI3, Sb2Te3–SbI3, Bi2Te3–BiI3 systems. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(10), pp. 1663–1667. (in Russ.) Belotskiy D. P., Dodik S. M., Antipov I. N., Nefedov Z. I. Synthesis and investigation of the telluroiodides of antimony and bismuth. Ukr. Chem. J., 1970, v. 36, pp. 897–900. (in Russ.) Aleshin V. A., Valitova N. R., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the antimony iodide system – antimony telluride. Izv. Akad. Nauk, Zhur. Fiz. Khim., 1974, v. 48, p. 2395. (in Russ.) Valitova N. R., Popovkin B. A., Novoselova A. V., Aslanov L. A. The compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9, pp. 2222–2223. (in Russ.) Turyanitsa I. D., Olekseyuk I. D., Kozmanko I. I. Investigation of the Sb2Te3–SbI3 system and properties of the compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(8), pp. 433–1434. (in Russ.) Voutsas G. P., Rentzeperis P. J. The crystal structure of antimony selenoiodide, SbSeI. Zeitschrift für Kristallographie, 1983, v. 161(1–2), pp. 111–118. https://doi.org/10.1524/zkri.1982.161.1-2.111 Kikuchi A., Oka Y., Sawaguchi E. Crystal Structure Determination of SbSI. J. Phys. Soc. Jap., 1967, v. 23(2), pp. 337–354. https://doi.org/10.1143/jpsj.23.337 Kichambare P., Sharon M. Preparation, characterization and physical properties of mixed Sb1–xBixTeI. Solid State Ionics, 1997, v. 101–103, pp. 155–159. https://doi.org/10.1016/s0167-2738(97)84024-6 Shevelkov A. V., Dikarev E. V., Shpanchenko R. V., Popovkin B.A. Crystal structures of bismuth tellurohalides BiTeX (X = Cl, Br, I) from X-ray powder diffraction data. J. Solid State Chem., 1995, v. 114(2), pp. 379–395. https://doi.org/10.1006/jssc.1995.1058 Aliev Z. S., Jafarov Y. I., Jafarli F. Y., Shevelkov A. V., Babanly M. B. The phase equilib
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信