基于攻击行为模型的在线恶意软件防御

Sanjeev Das, Hao Xiao, Yang Liu, Wei Zhang
{"title":"基于攻击行为模型的在线恶意软件防御","authors":"Sanjeev Das, Hao Xiao, Yang Liu, Wei Zhang","doi":"10.1109/ISCAS.2016.7527492","DOIUrl":null,"url":null,"abstract":"Malware detection is one central topic in cybersecurity, which ideally requires an accurate, efficient and robust (to malware variants) solution. In this work, we propose a hardwareassisted architecture to perform online malware detection with two phases. In the offline phase, we learn the attack model of malware in the form of Deterministic Finite Automaton (DFA). During the runtime phase, we implement a DFA-based detection approach in hardware to check whether a program's execution contains the malicious behavior specified in the DFA. We evaluate our method using real world data of 168 Linux malware samples and 370 benign applications. The results show that our DFA-based approach can recognize malware variants of same family with the potential to detect zero-day attacks. Implemented in hardware, our architecture offers a real time detection with low performance and resource overhead, and more importantly, it cannot be bypassed by malware using sophisticated evasion techniques.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"10 1","pages":"1322-1325"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Online malware defense using attack behavior model\",\"authors\":\"Sanjeev Das, Hao Xiao, Yang Liu, Wei Zhang\",\"doi\":\"10.1109/ISCAS.2016.7527492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware detection is one central topic in cybersecurity, which ideally requires an accurate, efficient and robust (to malware variants) solution. In this work, we propose a hardwareassisted architecture to perform online malware detection with two phases. In the offline phase, we learn the attack model of malware in the form of Deterministic Finite Automaton (DFA). During the runtime phase, we implement a DFA-based detection approach in hardware to check whether a program's execution contains the malicious behavior specified in the DFA. We evaluate our method using real world data of 168 Linux malware samples and 370 benign applications. The results show that our DFA-based approach can recognize malware variants of same family with the potential to detect zero-day attacks. Implemented in hardware, our architecture offers a real time detection with low performance and resource overhead, and more importantly, it cannot be bypassed by malware using sophisticated evasion techniques.\",\"PeriodicalId\":6546,\"journal\":{\"name\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"10 1\",\"pages\":\"1322-1325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2016.7527492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7527492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

恶意软件检测是网络安全中的一个核心主题,理想情况下,这需要一个准确、高效和健壮的(针对恶意软件变体)解决方案。在这项工作中,我们提出了一种硬件辅助架构,通过两个阶段来执行在线恶意软件检测。在离线阶段,我们以确定性有限自动机(Deterministic Finite Automaton, DFA)的形式学习恶意软件的攻击模型。在运行阶段,我们在硬件中实现基于DFA的检测方法,以检查程序的执行是否包含DFA中指定的恶意行为。我们使用168个Linux恶意软件样本和370个良性应用程序的真实世界数据来评估我们的方法。结果表明,基于dfa的方法可以识别同族恶意软件变体,并具有检测零日攻击的潜力。在硬件上实现,我们的架构提供了低性能和资源开销的实时检测,更重要的是,它不能被恶意软件使用复杂的规避技术绕过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online malware defense using attack behavior model
Malware detection is one central topic in cybersecurity, which ideally requires an accurate, efficient and robust (to malware variants) solution. In this work, we propose a hardwareassisted architecture to perform online malware detection with two phases. In the offline phase, we learn the attack model of malware in the form of Deterministic Finite Automaton (DFA). During the runtime phase, we implement a DFA-based detection approach in hardware to check whether a program's execution contains the malicious behavior specified in the DFA. We evaluate our method using real world data of 168 Linux malware samples and 370 benign applications. The results show that our DFA-based approach can recognize malware variants of same family with the potential to detect zero-day attacks. Implemented in hardware, our architecture offers a real time detection with low performance and resource overhead, and more importantly, it cannot be bypassed by malware using sophisticated evasion techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信