{"title":"淡水湿地鱼类氮稳定同位素对磷限制的响应","authors":"Jianming Hong, B. Gu","doi":"10.1051/kmae/2020033","DOIUrl":null,"url":null,"abstract":"Human-induced eutrophication has altered ecological processes in aquatic ecosystems. Detection of ecological changes is a prerequisite for protecting ecosystems from degradation. In this study, nitrogen stable isotopes (δ15N) in fish are evaluated as indicators of environmental changes in south Florida wetlands. Stable nitrogen isotope (δ15N) data of select fish species and water quality collected from the Florida Everglades between the 1990s and 2000s were used to assess the relationship between total phosphorus concentrations and δ15N ratios. The δ15N ratios in nine of ten select fish species increase significantly as total phosphorus concentration in the surface water increases. There were significant relationships between total nitrogen concentration in the surface water and δ15N ratios in several fish species. The pattern of changes in δ15N ratios along nutrient gradients suggests that increased eutrophication is recorded as the δ15N ratios in fish. The lack of human wastewater loading, the dominance in agricultural runoff and the high TN:TP ratio suggest that phosphorus is the limiting factor driving ecosystem productivity and the changes of δ15N ratios in fish. Results from this analysis demonstrate that δ15N ratios in fish integrate biotic responses to eutrophic process over time and could be a robust indicator for early ecological changes.","PeriodicalId":54748,"journal":{"name":"Knowledge and Management of Aquatic Ecosystems","volume":"45 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of nitrogen stable isotopes in fish to phosphorus limitation in freshwater wetlands\",\"authors\":\"Jianming Hong, B. Gu\",\"doi\":\"10.1051/kmae/2020033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-induced eutrophication has altered ecological processes in aquatic ecosystems. Detection of ecological changes is a prerequisite for protecting ecosystems from degradation. In this study, nitrogen stable isotopes (δ15N) in fish are evaluated as indicators of environmental changes in south Florida wetlands. Stable nitrogen isotope (δ15N) data of select fish species and water quality collected from the Florida Everglades between the 1990s and 2000s were used to assess the relationship between total phosphorus concentrations and δ15N ratios. The δ15N ratios in nine of ten select fish species increase significantly as total phosphorus concentration in the surface water increases. There were significant relationships between total nitrogen concentration in the surface water and δ15N ratios in several fish species. The pattern of changes in δ15N ratios along nutrient gradients suggests that increased eutrophication is recorded as the δ15N ratios in fish. The lack of human wastewater loading, the dominance in agricultural runoff and the high TN:TP ratio suggest that phosphorus is the limiting factor driving ecosystem productivity and the changes of δ15N ratios in fish. Results from this analysis demonstrate that δ15N ratios in fish integrate biotic responses to eutrophic process over time and could be a robust indicator for early ecological changes.\",\"PeriodicalId\":54748,\"journal\":{\"name\":\"Knowledge and Management of Aquatic Ecosystems\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Management of Aquatic Ecosystems\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1051/kmae/2020033\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Management of Aquatic Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1051/kmae/2020033","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
Responses of nitrogen stable isotopes in fish to phosphorus limitation in freshwater wetlands
Human-induced eutrophication has altered ecological processes in aquatic ecosystems. Detection of ecological changes is a prerequisite for protecting ecosystems from degradation. In this study, nitrogen stable isotopes (δ15N) in fish are evaluated as indicators of environmental changes in south Florida wetlands. Stable nitrogen isotope (δ15N) data of select fish species and water quality collected from the Florida Everglades between the 1990s and 2000s were used to assess the relationship between total phosphorus concentrations and δ15N ratios. The δ15N ratios in nine of ten select fish species increase significantly as total phosphorus concentration in the surface water increases. There were significant relationships between total nitrogen concentration in the surface water and δ15N ratios in several fish species. The pattern of changes in δ15N ratios along nutrient gradients suggests that increased eutrophication is recorded as the δ15N ratios in fish. The lack of human wastewater loading, the dominance in agricultural runoff and the high TN:TP ratio suggest that phosphorus is the limiting factor driving ecosystem productivity and the changes of δ15N ratios in fish. Results from this analysis demonstrate that δ15N ratios in fish integrate biotic responses to eutrophic process over time and could be a robust indicator for early ecological changes.
期刊介绍:
Knowledge and Management of Aquatic Ecosystems (KMAE-Bulletin Français de la Pêche et de la Pisciculture since 1928) serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to freshwater ecosystems.
The journal publishes articles, short communications, reviews, comments and replies that contribute to a scientific understanding of freshwater ecosystems and the impact of human activities upon these systems. Its scope includes economic, social, and public administration studies, in so far as they are directly concerned with the management of freshwater ecosystems (e.g. European Water Framework Directive, USA Clean Water Act, Canadian Water Quality Guidelines, …) and prove of general interest to freshwater specialists. Papers on insular freshwater ecosystems and on transitional waters are welcome. KMAE is not a preferred journal for taxonomical, physiological, biological, toxicological studies, unless a clear link to ecological aspects can be established. Articles with a very descriptive content can be accepted if they are part of a broader ecological context.