基于正则化方法的机器学习算法在医疗数据上的即兴预言

Vadamodula Prasad , T. Srinivasa Rao (Dr) , P.V.G.D. Prasad Reddy (Prof)
{"title":"基于正则化方法的机器学习算法在医疗数据上的即兴预言","authors":"Vadamodula Prasad ,&nbsp;T. Srinivasa Rao (Dr) ,&nbsp;P.V.G.D. Prasad Reddy (Prof)","doi":"10.1016/j.pmu.2015.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Patients with thyroid disease (TD) boast continuously increasing because of excessive growth of thyroid gland and its hormones. Automatic classification tools may reduce the burden on doctors. This paper evaluates the selected algorithms for predicting thyroid disease diagnoses (TDD). The algorithms considered here are regularization methods (RM) of machine learning algorithms (MLA). The analysis report generated by the proposed work suggests the best algorithm for predicting the exact levels of TDD. This work is a comparative study of MLA on UCI thyroid datasets (UCITD). The developed system deals with RM i.e., ridge regression algorithm (RRA) &amp; least absolute shrinkage and selection operator algorithm (LASSO). The above algorithms personage produce at most 79% accuracy by RRA and 98.99% accuracy by LASSO. Thus, this paper shows the importance of LASSO, along with an example for parameter generation. The decisive factors (DF) also suggest the accuracy rate of LASSO is much better when compared with RRA.</p></div>","PeriodicalId":101009,"journal":{"name":"Personalized Medicine Universe","volume":"5 ","pages":"Pages 32-40"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pmu.2015.09.001","citationCount":"9","resultStr":"{\"title\":\"Improvised prophecy using regularization method of machine learning algorithms on medical data\",\"authors\":\"Vadamodula Prasad ,&nbsp;T. Srinivasa Rao (Dr) ,&nbsp;P.V.G.D. Prasad Reddy (Prof)\",\"doi\":\"10.1016/j.pmu.2015.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Patients with thyroid disease (TD) boast continuously increasing because of excessive growth of thyroid gland and its hormones. Automatic classification tools may reduce the burden on doctors. This paper evaluates the selected algorithms for predicting thyroid disease diagnoses (TDD). The algorithms considered here are regularization methods (RM) of machine learning algorithms (MLA). The analysis report generated by the proposed work suggests the best algorithm for predicting the exact levels of TDD. This work is a comparative study of MLA on UCI thyroid datasets (UCITD). The developed system deals with RM i.e., ridge regression algorithm (RRA) &amp; least absolute shrinkage and selection operator algorithm (LASSO). The above algorithms personage produce at most 79% accuracy by RRA and 98.99% accuracy by LASSO. Thus, this paper shows the importance of LASSO, along with an example for parameter generation. The decisive factors (DF) also suggest the accuracy rate of LASSO is much better when compared with RRA.</p></div>\",\"PeriodicalId\":101009,\"journal\":{\"name\":\"Personalized Medicine Universe\",\"volume\":\"5 \",\"pages\":\"Pages 32-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pmu.2015.09.001\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Personalized Medicine Universe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2186495015000474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personalized Medicine Universe","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2186495015000474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

由于甲状腺及其激素的过度生长,甲状腺疾病(TD)患者不断增加。自动分类工具可以减轻医生的负担。本文对甲状腺疾病诊断(TDD)的预测算法进行了评价。这里考虑的算法是机器学习算法(MLA)的正则化方法(RM)。所提出的工作生成的分析报告提出了预测TDD确切水平的最佳算法。本工作是在UCI甲状腺数据集(UCITD)上进行MLA的比较研究。开发的系统处理RM,即岭回归算法(RRA) &;最小绝对收缩选择算子算法(LASSO)。以上算法中,RRA和LASSO的准确率分别为79%和98.99%。因此,本文展示了LASSO的重要性,并提供了一个参数生成的示例。决定性因子(DF)也表明LASSO的准确率明显优于RRA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvised prophecy using regularization method of machine learning algorithms on medical data

Patients with thyroid disease (TD) boast continuously increasing because of excessive growth of thyroid gland and its hormones. Automatic classification tools may reduce the burden on doctors. This paper evaluates the selected algorithms for predicting thyroid disease diagnoses (TDD). The algorithms considered here are regularization methods (RM) of machine learning algorithms (MLA). The analysis report generated by the proposed work suggests the best algorithm for predicting the exact levels of TDD. This work is a comparative study of MLA on UCI thyroid datasets (UCITD). The developed system deals with RM i.e., ridge regression algorithm (RRA) & least absolute shrinkage and selection operator algorithm (LASSO). The above algorithms personage produce at most 79% accuracy by RRA and 98.99% accuracy by LASSO. Thus, this paper shows the importance of LASSO, along with an example for parameter generation. The decisive factors (DF) also suggest the accuracy rate of LASSO is much better when compared with RRA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信