{"title":"超图着色的代数表述","authors":"Michael Krul, L. Thoma","doi":"10.37236/9894","DOIUrl":null,"url":null,"abstract":"A hypergraph is properly vertex-colored if no edge contains vertices which are assigned the same color. We provide an algebraic formulation of the $k$-colorability of uniform and non-uniform hypergraphs. This formulation provides an algebraic algorithm, via Gröbner bases, which can determine whether a given hypergraph is $k$-colorable or not. We further study new families of k-colorings with additional restrictions on permissible colorings. These new families of colorings generalize several recently studied variations of $k$-colorings.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"291 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algebraic Formulation of Hypergraph Colorings\",\"authors\":\"Michael Krul, L. Thoma\",\"doi\":\"10.37236/9894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hypergraph is properly vertex-colored if no edge contains vertices which are assigned the same color. We provide an algebraic formulation of the $k$-colorability of uniform and non-uniform hypergraphs. This formulation provides an algebraic algorithm, via Gröbner bases, which can determine whether a given hypergraph is $k$-colorable or not. We further study new families of k-colorings with additional restrictions on permissible colorings. These new families of colorings generalize several recently studied variations of $k$-colorings.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"291 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/9894\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/9894","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A hypergraph is properly vertex-colored if no edge contains vertices which are assigned the same color. We provide an algebraic formulation of the $k$-colorability of uniform and non-uniform hypergraphs. This formulation provides an algebraic algorithm, via Gröbner bases, which can determine whether a given hypergraph is $k$-colorable or not. We further study new families of k-colorings with additional restrictions on permissible colorings. These new families of colorings generalize several recently studied variations of $k$-colorings.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.