螺线管图,自动序列,范德普系列,和粉自动机

IF 0.5 4区 数学 Q3 MATHEMATICS
R. Grigorchuk, D. Savchuk
{"title":"螺线管图,自动序列,范德普系列,和粉自动机","authors":"R. Grigorchuk, D. Savchuk","doi":"10.1017/S1446788722000027","DOIUrl":null,"url":null,"abstract":"Abstract The ring $\\mathbb Z_{d}$ of d-adic integers has a natural interpretation as the boundary of a rooted d-ary tree $T_{d}$ . Endomorphisms of this tree (that is, solenoidal maps) are in one-to-one correspondence with 1-Lipschitz mappings from $\\mathbb Z_{d}$ to itself. In the case when $d=p$ is prime, Anashin [‘Automata finiteness criterion in terms of van der Put series of automata functions’,p-Adic Numbers Ultrametric Anal. Appl. 4(2) (2012), 151–160] showed that $f\\in \\mathrm {Lip}^{1}(\\mathbb Z_{p})$ is defined by a finite Mealy automaton if and only if the reduced coefficients of its van der Put series constitute a p-automatic sequence over a finite subset of $\\mathbb Z_{p}\\cap \\mathbb Q$ . We generalize this result to arbitrary integers $d\\geq 2$ and describe the explicit connection between the Moore automaton producing such a sequence and the Mealy automaton inducing the corresponding endomorphism of a rooted tree. We also produce two algorithms converting one automaton to the other and vice versa. As a demonstration, we apply our algorithms to the Thue–Morse sequence and to one of the generators of the lamplighter group acting on the binary rooted tree.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"55 1","pages":"78 - 109"},"PeriodicalIF":0.5000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOLENOIDAL MAPS, AUTOMATIC SEQUENCES, VAN DER PUT SERIES, AND MEALY AUTOMATA\",\"authors\":\"R. Grigorchuk, D. Savchuk\",\"doi\":\"10.1017/S1446788722000027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The ring $\\\\mathbb Z_{d}$ of d-adic integers has a natural interpretation as the boundary of a rooted d-ary tree $T_{d}$ . Endomorphisms of this tree (that is, solenoidal maps) are in one-to-one correspondence with 1-Lipschitz mappings from $\\\\mathbb Z_{d}$ to itself. In the case when $d=p$ is prime, Anashin [‘Automata finiteness criterion in terms of van der Put series of automata functions’,p-Adic Numbers Ultrametric Anal. Appl. 4(2) (2012), 151–160] showed that $f\\\\in \\\\mathrm {Lip}^{1}(\\\\mathbb Z_{p})$ is defined by a finite Mealy automaton if and only if the reduced coefficients of its van der Put series constitute a p-automatic sequence over a finite subset of $\\\\mathbb Z_{p}\\\\cap \\\\mathbb Q$ . We generalize this result to arbitrary integers $d\\\\geq 2$ and describe the explicit connection between the Moore automaton producing such a sequence and the Mealy automaton inducing the corresponding endomorphism of a rooted tree. We also produce two algorithms converting one automaton to the other and vice versa. As a demonstration, we apply our algorithms to the Thue–Morse sequence and to one of the generators of the lamplighter group acting on the binary rooted tree.\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":\"55 1\",\"pages\":\"78 - 109\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1446788722000027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

d进整数的环$\mathbb Z_{d}$可以很自然地解释为有根的d进树$T_{d}$的边界。该树的自同态(即螺线线映射)与从$\mathbb Z_{d}$到自身的1-Lipschitz映射是一一对应的。在$d=p$为素数的情况下,Anashin[关于自动机函数的van der Put级数的自动机有限性判据],p进数超度量。应用程序4(2)(2012),151-160]表明$f\in \mathrm {Lip}^{1}(\mathbb Z_{p})$是由有限Mealy自动机定义的,当且仅当其van der Put级数的约简系数构成$\mathbb Z_{p}\cap \mathbb Q$有限子集上的p-自动序列。我们将这一结果推广到任意整数$d\geq 2$,并描述了产生这样一个序列的摩尔自动机与产生相应根树自同态的米利自动机之间的显式联系。我们还生成了两种将一个自动机转换为另一个自动机的算法,反之亦然。作为演示,我们将我们的算法应用于Thue-Morse序列和作用于二叉根树的lamplighter群的一个生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOLENOIDAL MAPS, AUTOMATIC SEQUENCES, VAN DER PUT SERIES, AND MEALY AUTOMATA
Abstract The ring $\mathbb Z_{d}$ of d-adic integers has a natural interpretation as the boundary of a rooted d-ary tree $T_{d}$ . Endomorphisms of this tree (that is, solenoidal maps) are in one-to-one correspondence with 1-Lipschitz mappings from $\mathbb Z_{d}$ to itself. In the case when $d=p$ is prime, Anashin [‘Automata finiteness criterion in terms of van der Put series of automata functions’,p-Adic Numbers Ultrametric Anal. Appl. 4(2) (2012), 151–160] showed that $f\in \mathrm {Lip}^{1}(\mathbb Z_{p})$ is defined by a finite Mealy automaton if and only if the reduced coefficients of its van der Put series constitute a p-automatic sequence over a finite subset of $\mathbb Z_{p}\cap \mathbb Q$ . We generalize this result to arbitrary integers $d\geq 2$ and describe the explicit connection between the Moore automaton producing such a sequence and the Mealy automaton inducing the corresponding endomorphism of a rooted tree. We also produce two algorithms converting one automaton to the other and vice versa. As a demonstration, we apply our algorithms to the Thue–Morse sequence and to one of the generators of the lamplighter group acting on the binary rooted tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信