探索冠状病毒消毒领域的未来

D. Ghernaout, N. Elboughdiri
{"title":"探索冠状病毒消毒领域的未来","authors":"D. Ghernaout, N. Elboughdiri","doi":"10.4236/OALIB.1107487","DOIUrl":null,"url":null,"abstract":"Recently, huge awareness has been accorded to potential circulation of SARS- CoV-2 through water systems. This work deals with this problem and researches the behavior of coronaviruses (CoVs) in water media, with specific interest on the new data on the fresh SARS-CoV-2. The examination of the natural persistence of CoVs and the performance of the disinfection technologies are also discussed. All CoVs have a restricted stability in water media: 2 - 5 days in tap water and 2 - 6 days in wastewater were judged enough for 2-log reduction of SARS-CoV-2 titer. SARS-CoV-2 is distinguished by a weak construction and is vulnerable to traditional disinfection technologies that have been demonstrated to be very efficient in their neutralization. Approximately 5 min of exposure to sodium hypochlorite (1%), ethanol (70%), iodine (7.5%), soap solution and additional usual disinfectants was enough for reaching 7 - 8-log of SARS-CoV-2 titer decrease. Thermal treatment is efficacious in SARS-CoV-2 demobilization: 30 min at 56 or 5 min at 70°C were enough for attaining the total depletion of the infectivity. Further, SARS-CoV-2 remains vulnerable to sunlight and quickly demobilized by UV radiation. UV-C at 254 nm and intensity of 2.2 mW/cm2 yields 3-log of SARS-CoV-2 titer decrease in less than 3 s of application. Consequently for SARS-CoV-2 disinfection, usual injections of killing agents remain required for sanitation and for wastewater treatment. Relating to controlling CoVs diffusion and applying disinfection technologies, vigilance remains essential.","PeriodicalId":19593,"journal":{"name":"Open Access Library Journal","volume":"17 1","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploring What Lies Ahead in the Field of Disinfecting Coronavirus\",\"authors\":\"D. Ghernaout, N. Elboughdiri\",\"doi\":\"10.4236/OALIB.1107487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, huge awareness has been accorded to potential circulation of SARS- CoV-2 through water systems. This work deals with this problem and researches the behavior of coronaviruses (CoVs) in water media, with specific interest on the new data on the fresh SARS-CoV-2. The examination of the natural persistence of CoVs and the performance of the disinfection technologies are also discussed. All CoVs have a restricted stability in water media: 2 - 5 days in tap water and 2 - 6 days in wastewater were judged enough for 2-log reduction of SARS-CoV-2 titer. SARS-CoV-2 is distinguished by a weak construction and is vulnerable to traditional disinfection technologies that have been demonstrated to be very efficient in their neutralization. Approximately 5 min of exposure to sodium hypochlorite (1%), ethanol (70%), iodine (7.5%), soap solution and additional usual disinfectants was enough for reaching 7 - 8-log of SARS-CoV-2 titer decrease. Thermal treatment is efficacious in SARS-CoV-2 demobilization: 30 min at 56 or 5 min at 70°C were enough for attaining the total depletion of the infectivity. Further, SARS-CoV-2 remains vulnerable to sunlight and quickly demobilized by UV radiation. UV-C at 254 nm and intensity of 2.2 mW/cm2 yields 3-log of SARS-CoV-2 titer decrease in less than 3 s of application. Consequently for SARS-CoV-2 disinfection, usual injections of killing agents remain required for sanitation and for wastewater treatment. Relating to controlling CoVs diffusion and applying disinfection technologies, vigilance remains essential.\",\"PeriodicalId\":19593,\"journal\":{\"name\":\"Open Access Library Journal\",\"volume\":\"17 1\",\"pages\":\"1-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Access Library Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/OALIB.1107487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Library Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/OALIB.1107487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,人们对SARS- CoV-2可能通过水系统传播产生了极大的认识。这项工作解决了这一问题,并研究了冠状病毒(cov)在水介质中的行为,特别关注新鲜SARS-CoV-2的新数据。还讨论了冠状病毒自然持久性的检验和消毒技术的性能。所有冠状病毒在水介质中都具有有限的稳定性:在自来水中2- 5天和在废水中2- 6天被认为足以使SARS-CoV-2滴度降低2倍。SARS-CoV-2的特点是结构薄弱,容易受到传统消毒技术的影响,而传统消毒技术已被证明在中和方面非常有效。暴露于次氯酸钠(1%)、乙醇(70%)、碘(7.5%)、肥皂溶液和其他常用消毒剂约5分钟,足以使SARS-CoV-2滴度下降7 - 8 log。热处理在SARS-CoV-2复员中是有效的:在56°C下30分钟或在70°C下5分钟足以达到完全耗尽传染性。此外,SARS-CoV-2仍然容易受到阳光的影响,并会在紫外线辐射下迅速复原。在254 nm和2.2 mW/cm2强度的UV-C照射下,在不到3秒的时间内,SARS-CoV-2滴度降低了3倍。因此,对于SARS-CoV-2的消毒,仍然需要通常注射杀灭剂来进行卫生和废水处理。在控制冠状病毒扩散和应用消毒技术方面,保持警惕仍然至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring What Lies Ahead in the Field of Disinfecting Coronavirus
Recently, huge awareness has been accorded to potential circulation of SARS- CoV-2 through water systems. This work deals with this problem and researches the behavior of coronaviruses (CoVs) in water media, with specific interest on the new data on the fresh SARS-CoV-2. The examination of the natural persistence of CoVs and the performance of the disinfection technologies are also discussed. All CoVs have a restricted stability in water media: 2 - 5 days in tap water and 2 - 6 days in wastewater were judged enough for 2-log reduction of SARS-CoV-2 titer. SARS-CoV-2 is distinguished by a weak construction and is vulnerable to traditional disinfection technologies that have been demonstrated to be very efficient in their neutralization. Approximately 5 min of exposure to sodium hypochlorite (1%), ethanol (70%), iodine (7.5%), soap solution and additional usual disinfectants was enough for reaching 7 - 8-log of SARS-CoV-2 titer decrease. Thermal treatment is efficacious in SARS-CoV-2 demobilization: 30 min at 56 or 5 min at 70°C were enough for attaining the total depletion of the infectivity. Further, SARS-CoV-2 remains vulnerable to sunlight and quickly demobilized by UV radiation. UV-C at 254 nm and intensity of 2.2 mW/cm2 yields 3-log of SARS-CoV-2 titer decrease in less than 3 s of application. Consequently for SARS-CoV-2 disinfection, usual injections of killing agents remain required for sanitation and for wastewater treatment. Relating to controlling CoVs diffusion and applying disinfection technologies, vigilance remains essential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信