Thi To Nhu Dang, Minh Thong Nguyen, M. Nguyen, Xuan-Viet Dao, Thao Vien Le
{"title":"具有高显色比和R9的WLED用非掺杂荧光粉","authors":"Thi To Nhu Dang, Minh Thong Nguyen, M. Nguyen, Xuan-Viet Dao, Thao Vien Le","doi":"10.26459/hueunijns.v132i1b.6838","DOIUrl":null,"url":null,"abstract":"The effect of the ZnO/SnO2 ratio on phase formation and optical properties of the Zn-Sn-O compound was investigated by varying the ZnO/SnO2 molar ratio (ZnO/SnO2 = 1:2, 1:1, 2:1, 3:1, and 4:1). All samples were synthesised with high-energy planetary ball milling, followed by calcination at 1000 °C in the air. The result from X-Ray diffraction patterns (XRD) shows that the single-phase Zn2SnO4 is achieved at the ZnO/SnO2 ratio of 2:1. Whereas, the mixed phase of ZnO and Zn2SnO4 formed when ZnO is more than SnO2 (3:1 and 4:1). On the other hand, the XRD patterns of the products obtained at a ratio where SnO2 is more than ZnO present a mixture of SnO2 and Zn2SnO4. The photoluminescence of the two samples with the ratio of 2:1 and 1:3 gives full-visible range spectra from 400 to 800 nm, which are in the blue-far-red region centred at about 514, 580, and 690 nm. Temperature-dependent luminescence measurements were also carried out in this work, and the results indicate that the prepared phosphor Zn-Sn-O at the ZnO/SnO2 ratio of 1:2 has thermal stability. The obtained material was used to coat near UV LED chips, and the WLED possesses the highest CRI of 95. The SnO2-Zn2SnO4 powder can be used as a phosphor for WLED applications with high CRI and R9.","PeriodicalId":13004,"journal":{"name":"Hue University Journal of Science: Natural Science","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-doped phosphor for WLED with high CRI and R9\",\"authors\":\"Thi To Nhu Dang, Minh Thong Nguyen, M. Nguyen, Xuan-Viet Dao, Thao Vien Le\",\"doi\":\"10.26459/hueunijns.v132i1b.6838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of the ZnO/SnO2 ratio on phase formation and optical properties of the Zn-Sn-O compound was investigated by varying the ZnO/SnO2 molar ratio (ZnO/SnO2 = 1:2, 1:1, 2:1, 3:1, and 4:1). All samples were synthesised with high-energy planetary ball milling, followed by calcination at 1000 °C in the air. The result from X-Ray diffraction patterns (XRD) shows that the single-phase Zn2SnO4 is achieved at the ZnO/SnO2 ratio of 2:1. Whereas, the mixed phase of ZnO and Zn2SnO4 formed when ZnO is more than SnO2 (3:1 and 4:1). On the other hand, the XRD patterns of the products obtained at a ratio where SnO2 is more than ZnO present a mixture of SnO2 and Zn2SnO4. The photoluminescence of the two samples with the ratio of 2:1 and 1:3 gives full-visible range spectra from 400 to 800 nm, which are in the blue-far-red region centred at about 514, 580, and 690 nm. Temperature-dependent luminescence measurements were also carried out in this work, and the results indicate that the prepared phosphor Zn-Sn-O at the ZnO/SnO2 ratio of 1:2 has thermal stability. The obtained material was used to coat near UV LED chips, and the WLED possesses the highest CRI of 95. The SnO2-Zn2SnO4 powder can be used as a phosphor for WLED applications with high CRI and R9.\",\"PeriodicalId\":13004,\"journal\":{\"name\":\"Hue University Journal of Science: Natural Science\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hue University Journal of Science: Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26459/hueunijns.v132i1b.6838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hue University Journal of Science: Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26459/hueunijns.v132i1b.6838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of the ZnO/SnO2 ratio on phase formation and optical properties of the Zn-Sn-O compound was investigated by varying the ZnO/SnO2 molar ratio (ZnO/SnO2 = 1:2, 1:1, 2:1, 3:1, and 4:1). All samples were synthesised with high-energy planetary ball milling, followed by calcination at 1000 °C in the air. The result from X-Ray diffraction patterns (XRD) shows that the single-phase Zn2SnO4 is achieved at the ZnO/SnO2 ratio of 2:1. Whereas, the mixed phase of ZnO and Zn2SnO4 formed when ZnO is more than SnO2 (3:1 and 4:1). On the other hand, the XRD patterns of the products obtained at a ratio where SnO2 is more than ZnO present a mixture of SnO2 and Zn2SnO4. The photoluminescence of the two samples with the ratio of 2:1 and 1:3 gives full-visible range spectra from 400 to 800 nm, which are in the blue-far-red region centred at about 514, 580, and 690 nm. Temperature-dependent luminescence measurements were also carried out in this work, and the results indicate that the prepared phosphor Zn-Sn-O at the ZnO/SnO2 ratio of 1:2 has thermal stability. The obtained material was used to coat near UV LED chips, and the WLED possesses the highest CRI of 95. The SnO2-Zn2SnO4 powder can be used as a phosphor for WLED applications with high CRI and R9.