用逻辑回归方法预测蛋白质-蛋白质相互作用数据中的蛋白质功能

Qingshan Ni, Zheng-Zhi Wang, Qingjuan Han, Gangguo Li, Xiaomin Wang, Guangyun Wang
{"title":"用逻辑回归方法预测蛋白质-蛋白质相互作用数据中的蛋白质功能","authors":"Qingshan Ni, Zheng-Zhi Wang, Qingjuan Han, Gangguo Li, Xiaomin Wang, Guangyun Wang","doi":"10.1109/ICBBE.2009.5163737","DOIUrl":null,"url":null,"abstract":"Protein function determination is one of the most important issues in biology research. In this paper, a new method, which is based on logistic regression method, is introduced to predict protein function from protein-protein interaction data. In the proposed method, associations among different functions are taken into account by representing a protein using all the functional annotations of its interaction protein partners. We apply our method to a constructed data set for yeast based upon protein function classifications of FunCat scheme and upon the interaction networks collected from BioGrid. The results obtained by 3-fold cross-validation test show that the proposed method can obtain desirable results for protein function prediction and outperforms some existing approaches based on protein-protein interaction data.","PeriodicalId":6430,"journal":{"name":"2009 3rd International Conference on Bioinformatics and Biomedical Engineering","volume":"3 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using Logistic Regression Method to Predict Protein Function from Protein-Protein Interaction Data\",\"authors\":\"Qingshan Ni, Zheng-Zhi Wang, Qingjuan Han, Gangguo Li, Xiaomin Wang, Guangyun Wang\",\"doi\":\"10.1109/ICBBE.2009.5163737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein function determination is one of the most important issues in biology research. In this paper, a new method, which is based on logistic regression method, is introduced to predict protein function from protein-protein interaction data. In the proposed method, associations among different functions are taken into account by representing a protein using all the functional annotations of its interaction protein partners. We apply our method to a constructed data set for yeast based upon protein function classifications of FunCat scheme and upon the interaction networks collected from BioGrid. The results obtained by 3-fold cross-validation test show that the proposed method can obtain desirable results for protein function prediction and outperforms some existing approaches based on protein-protein interaction data.\",\"PeriodicalId\":6430,\"journal\":{\"name\":\"2009 3rd International Conference on Bioinformatics and Biomedical Engineering\",\"volume\":\"3 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Conference on Bioinformatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBBE.2009.5163737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2009.5163737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

蛋白质功能测定是生物学研究的重要课题之一。本文提出了一种基于逻辑回归方法的蛋白质相互作用数据预测蛋白质功能的新方法。在提出的方法中,通过使用其相互作用蛋白伙伴的所有功能注释来表示蛋白质,从而考虑了不同功能之间的关联。我们基于FunCat方案的蛋白质功能分类和从BioGrid收集的相互作用网络,将我们的方法应用于酵母的构建数据集。3倍交叉验证试验结果表明,该方法能够获得较好的蛋白质功能预测结果,并且优于现有的基于蛋白质-蛋白质相互作用数据的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Logistic Regression Method to Predict Protein Function from Protein-Protein Interaction Data
Protein function determination is one of the most important issues in biology research. In this paper, a new method, which is based on logistic regression method, is introduced to predict protein function from protein-protein interaction data. In the proposed method, associations among different functions are taken into account by representing a protein using all the functional annotations of its interaction protein partners. We apply our method to a constructed data set for yeast based upon protein function classifications of FunCat scheme and upon the interaction networks collected from BioGrid. The results obtained by 3-fold cross-validation test show that the proposed method can obtain desirable results for protein function prediction and outperforms some existing approaches based on protein-protein interaction data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信