高效气体分离的金属-有机骨架混合基质水凝胶膜

Lei Tian , Yuxiu Sun , Xiangyu Guo , Zhihua Qiao , Chongli Zhong
{"title":"高效气体分离的金属-有机骨架混合基质水凝胶膜","authors":"Lei Tian ,&nbsp;Yuxiu Sun ,&nbsp;Xiangyu Guo ,&nbsp;Zhihua Qiao ,&nbsp;Chongli Zhong","doi":"10.1016/j.advmem.2021.100009","DOIUrl":null,"url":null,"abstract":"<div><p>MOF/polymer interface in mixed-matrix membranes (MMMs) has been considered as a crucial issue for achieving highly efficient gas separation performance. In this research, aluminum fumarate framework (A520) based mixed matrix hydrogel self-supported membranes (A520-MMHMs) were prepared by a facile UV photopolymerization. The hydrophilic A520 incorporated into hydrogel polymer effectively avoided the formation of interfacial defects and improved the compatibility between MOF and hydrogel matrix. As a result, the A520-MMHM possessed enhanced CO<sub>2</sub> permeability (∼432.87 Barrer) and CO<sub>2</sub>/CH<sub>4</sub> selectivity (∼51.05) in comparison with pure hydrogel membrane. This performance data is very close to the updated McKeown 2019 upper bound, far exceeding the 2008 Robeson upper bound. Therefore, the design of hydrogel membrane incorporated with water-stable MOF may open up a new way for optimizing self-supported hydrogel membrane performance in gas separation.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"1 ","pages":"Article 100009"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823421000105/pdfft?md5=3f3cbc2bb24f3e26b622cc2251846153&pid=1-s2.0-S2772823421000105-main.pdf","citationCount":"8","resultStr":"{\"title\":\"Metal-organic framework based mixed matrix hydrogel membranes for highly efficient gas separation\",\"authors\":\"Lei Tian ,&nbsp;Yuxiu Sun ,&nbsp;Xiangyu Guo ,&nbsp;Zhihua Qiao ,&nbsp;Chongli Zhong\",\"doi\":\"10.1016/j.advmem.2021.100009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MOF/polymer interface in mixed-matrix membranes (MMMs) has been considered as a crucial issue for achieving highly efficient gas separation performance. In this research, aluminum fumarate framework (A520) based mixed matrix hydrogel self-supported membranes (A520-MMHMs) were prepared by a facile UV photopolymerization. The hydrophilic A520 incorporated into hydrogel polymer effectively avoided the formation of interfacial defects and improved the compatibility between MOF and hydrogel matrix. As a result, the A520-MMHM possessed enhanced CO<sub>2</sub> permeability (∼432.87 Barrer) and CO<sub>2</sub>/CH<sub>4</sub> selectivity (∼51.05) in comparison with pure hydrogel membrane. This performance data is very close to the updated McKeown 2019 upper bound, far exceeding the 2008 Robeson upper bound. Therefore, the design of hydrogel membrane incorporated with water-stable MOF may open up a new way for optimizing self-supported hydrogel membrane performance in gas separation.</p></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"1 \",\"pages\":\"Article 100009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772823421000105/pdfft?md5=3f3cbc2bb24f3e26b622cc2251846153&pid=1-s2.0-S2772823421000105-main.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823421000105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823421000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

混合基膜中MOF/聚合物的界面是实现高效气体分离的关键问题。本研究采用紫外光聚合法制备了富马酸铝骨架(A520)基混合基质水凝胶自支撑膜(A520- mmhms)。将亲水性A520掺入水凝胶聚合物中,有效避免了界面缺陷的形成,提高了MOF与水凝胶基质的相容性。结果表明,与纯水凝胶膜相比,A520-MMHM具有更高的CO2渗透性(~ 432.87 Barrer)和CO2/CH4选择性(~ 51.05)。这一性能数据非常接近更新的McKeown 2019上限,远远超过2008年Robeson上限。因此,加入水稳定MOF的水凝胶膜的设计可能为优化自支撑水凝胶膜在气体分离中的性能开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal-organic framework based mixed matrix hydrogel membranes for highly efficient gas separation

Metal-organic framework based mixed matrix hydrogel membranes for highly efficient gas separation

MOF/polymer interface in mixed-matrix membranes (MMMs) has been considered as a crucial issue for achieving highly efficient gas separation performance. In this research, aluminum fumarate framework (A520) based mixed matrix hydrogel self-supported membranes (A520-MMHMs) were prepared by a facile UV photopolymerization. The hydrophilic A520 incorporated into hydrogel polymer effectively avoided the formation of interfacial defects and improved the compatibility between MOF and hydrogel matrix. As a result, the A520-MMHM possessed enhanced CO2 permeability (∼432.87 Barrer) and CO2/CH4 selectivity (∼51.05) in comparison with pure hydrogel membrane. This performance data is very close to the updated McKeown 2019 upper bound, far exceeding the 2008 Robeson upper bound. Therefore, the design of hydrogel membrane incorporated with water-stable MOF may open up a new way for optimizing self-supported hydrogel membrane performance in gas separation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信