二氧化硅/粘土纳米颗粒对环氧基胶粘剂微观结构和力学性能的影响

Şehram Di̇zeci̇, A. Kandemir
{"title":"二氧化硅/粘土纳米颗粒对环氧基胶粘剂微观结构和力学性能的影响","authors":"Şehram Di̇zeci̇, A. Kandemir","doi":"10.15671/hjbc.1192751","DOIUrl":null,"url":null,"abstract":"Improving the mechanical properties of the epoxy-based adhesives with nanoparticles is one of the methods which justifies the use of adhesive joints significantly. This work studies the strength of adhesively bonded single-lap joints (SLJs) considering the pure adhesive, the reinforced adhesive with nano-silica particles (NSPs), nano-clay particles (NCPs), and a combination of both nano particles. Uniaxial tensile testing of the SLJs was conducted to reveal the failure loads of the joints and their elongations at failure. Furthermore, Scanning electron microscope (SEM) images and X-ray Diffraction (XRD) Analyses were used to investigate dispersion quality. It was observed that the use of just 1 wt.% NCPs or 2 wt.% NSPs improve the failure load significantly whereas the combination of both particles generally leads to large agglomerations. It is also concluded that the dispersion quality is a key to improve the strength by shifting the failure mechanism from adhesion to cohesion type.","PeriodicalId":12939,"journal":{"name":"Hacettepe Journal of Biology and Chemistry","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Silica/Clay Nanoparticles on Microstructural and Mechanical Properties of Epoxy Based Adhesives\",\"authors\":\"Şehram Di̇zeci̇, A. Kandemir\",\"doi\":\"10.15671/hjbc.1192751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the mechanical properties of the epoxy-based adhesives with nanoparticles is one of the methods which justifies the use of adhesive joints significantly. This work studies the strength of adhesively bonded single-lap joints (SLJs) considering the pure adhesive, the reinforced adhesive with nano-silica particles (NSPs), nano-clay particles (NCPs), and a combination of both nano particles. Uniaxial tensile testing of the SLJs was conducted to reveal the failure loads of the joints and their elongations at failure. Furthermore, Scanning electron microscope (SEM) images and X-ray Diffraction (XRD) Analyses were used to investigate dispersion quality. It was observed that the use of just 1 wt.% NCPs or 2 wt.% NSPs improve the failure load significantly whereas the combination of both particles generally leads to large agglomerations. It is also concluded that the dispersion quality is a key to improve the strength by shifting the failure mechanism from adhesion to cohesion type.\",\"PeriodicalId\":12939,\"journal\":{\"name\":\"Hacettepe Journal of Biology and Chemistry\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Biology and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15671/hjbc.1192751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Biology and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15671/hjbc.1192751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用纳米颗粒改善环氧基胶粘剂的力学性能是证明胶粘剂接头使用合理性的重要方法之一。本文研究了纯胶粘剂、纳米二氧化硅颗粒(NSPs)、纳米粘土颗粒(ncp)增强胶粘剂以及两种纳米颗粒组合的单搭接接头(slj)的粘接强度。对slj进行了单轴拉伸试验,揭示了接头的破坏载荷及其破坏时的延伸量。并用扫描电镜(SEM)和x射线衍射(XRD)分析了材料的分散质量。观察到,仅使用1 wt.%的ncp或2 wt.%的NSPs可显著改善失效负荷,而这两种颗粒的组合通常会导致大的团聚。将粘结型失效机制转变为内聚型失效机制是提高强度的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Silica/Clay Nanoparticles on Microstructural and Mechanical Properties of Epoxy Based Adhesives
Improving the mechanical properties of the epoxy-based adhesives with nanoparticles is one of the methods which justifies the use of adhesive joints significantly. This work studies the strength of adhesively bonded single-lap joints (SLJs) considering the pure adhesive, the reinforced adhesive with nano-silica particles (NSPs), nano-clay particles (NCPs), and a combination of both nano particles. Uniaxial tensile testing of the SLJs was conducted to reveal the failure loads of the joints and their elongations at failure. Furthermore, Scanning electron microscope (SEM) images and X-ray Diffraction (XRD) Analyses were used to investigate dispersion quality. It was observed that the use of just 1 wt.% NCPs or 2 wt.% NSPs improve the failure load significantly whereas the combination of both particles generally leads to large agglomerations. It is also concluded that the dispersion quality is a key to improve the strength by shifting the failure mechanism from adhesion to cohesion type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信