Dominik Bernhardt, Tim Boykett, Alice Devillers, Johannes Flake, S. Glasby
{"title":"对于某些𝑘∈𝐺,群𝐺满足一个泛函方程𝑓(χ𝑘)= χ𝑓(χ)","authors":"Dominik Bernhardt, Tim Boykett, Alice Devillers, Johannes Flake, S. Glasby","doi":"10.1515/jgth-2021-0158","DOIUrl":null,"url":null,"abstract":"Abstract We study the groups 𝐺 with the curious property that there exists an element k ∈ G k\\in G and a function f : G → G f\\colon G\\to G such that f ( x k ) = x f ( x ) f(xk)=xf(x) holds for all x ∈ G x\\in G . This property arose from the study of near-rings and input-output automata on groups. We call a group with this property a 𝐽-group. Finite 𝐽-groups must have odd order, and hence are solvable. We prove that every finite nilpotent group of odd order is a 𝐽-group if its nilpotency class 𝑐 satisfies c ⩽ 6 c\\leqslant 6 . If 𝐺 is a finite 𝑝-group, with p > 2 p>2 and p 2 > 2 c - 1 p^{2}>2c-1 , then we prove that 𝐺 is 𝐽-group. Finally, if p > 2 p>2 and 𝐺 is a regular 𝑝-group or, more generally, a power-closed one (i.e., in each section and for each m ⩾ 1 m\\geqslant 1 , the subset of p m p^{m} -th powers is a subgroup), then we prove that 𝐺 is a 𝐽-group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The groups 𝐺 satisfying a functional equation 𝑓(𝑥𝑘) = 𝑥𝑓(𝑥) for some 𝑘 ∈ 𝐺\",\"authors\":\"Dominik Bernhardt, Tim Boykett, Alice Devillers, Johannes Flake, S. Glasby\",\"doi\":\"10.1515/jgth-2021-0158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the groups 𝐺 with the curious property that there exists an element k ∈ G k\\\\in G and a function f : G → G f\\\\colon G\\\\to G such that f ( x k ) = x f ( x ) f(xk)=xf(x) holds for all x ∈ G x\\\\in G . This property arose from the study of near-rings and input-output automata on groups. We call a group with this property a 𝐽-group. Finite 𝐽-groups must have odd order, and hence are solvable. We prove that every finite nilpotent group of odd order is a 𝐽-group if its nilpotency class 𝑐 satisfies c ⩽ 6 c\\\\leqslant 6 . If 𝐺 is a finite 𝑝-group, with p > 2 p>2 and p 2 > 2 c - 1 p^{2}>2c-1 , then we prove that 𝐺 is 𝐽-group. Finally, if p > 2 p>2 and 𝐺 is a regular 𝑝-group or, more generally, a power-closed one (i.e., in each section and for each m ⩾ 1 m\\\\geqslant 1 , the subset of p m p^{m} -th powers is a subgroup), then we prove that 𝐺 is a 𝐽-group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2021-0158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2021-0158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要研究了一类群𝐺,它们具有一个奇异的性质,即存在一个元素k∈G k \in G和一个函数f: G→G f \colon G \to G,使得f(x)减去(x)减去f(x)减去f(xk)减去xf(x)对于所有x∈G x \in G都成立。这一性质源于对群上的近环和输入输出自动机的研究。我们称具有此属性的组为𝐽-group。有限的𝐽-groups必须是奇阶的,因此是可解的。证明了奇数阶幂零群是一个𝐽-group,如果它的幂零类𝑐满足c≤6 c≤\leqslant 6。如果𝐺是有限的𝑝-group,且p>2 p>2且p>2∑c-1 p^{2}>2c-1,则证明𝐺是𝐽-group。最后,如果p>2 p>2并且𝐺是一个规则的𝑝-group,或者更一般地说,是一个幂闭的𝑝-group(即,在每个部分中并且对于每个m小于1 m \geqslant 1, p {m p^m} -幂的子集是一个子群),那么我们证明𝐺是𝐽-group。
The groups 𝐺 satisfying a functional equation 𝑓(𝑥𝑘) = 𝑥𝑓(𝑥) for some 𝑘 ∈ 𝐺
Abstract We study the groups 𝐺 with the curious property that there exists an element k ∈ G k\in G and a function f : G → G f\colon G\to G such that f ( x k ) = x f ( x ) f(xk)=xf(x) holds for all x ∈ G x\in G . This property arose from the study of near-rings and input-output automata on groups. We call a group with this property a 𝐽-group. Finite 𝐽-groups must have odd order, and hence are solvable. We prove that every finite nilpotent group of odd order is a 𝐽-group if its nilpotency class 𝑐 satisfies c ⩽ 6 c\leqslant 6 . If 𝐺 is a finite 𝑝-group, with p > 2 p>2 and p 2 > 2 c - 1 p^{2}>2c-1 , then we prove that 𝐺 is 𝐽-group. Finally, if p > 2 p>2 and 𝐺 is a regular 𝑝-group or, more generally, a power-closed one (i.e., in each section and for each m ⩾ 1 m\geqslant 1 , the subset of p m p^{m} -th powers is a subgroup), then we prove that 𝐺 is a 𝐽-group.