对于某些𝑘∈𝐺,群𝐺满足一个泛函方程𝑓(χ𝑘)= χ𝑓(χ)

Pub Date : 2022-05-12 DOI:10.1515/jgth-2021-0158
Dominik Bernhardt, Tim Boykett, Alice Devillers, Johannes Flake, S. Glasby
{"title":"对于某些𝑘∈𝐺,群𝐺满足一个泛函方程𝑓(χ𝑘)= χ𝑓(χ)","authors":"Dominik Bernhardt, Tim Boykett, Alice Devillers, Johannes Flake, S. Glasby","doi":"10.1515/jgth-2021-0158","DOIUrl":null,"url":null,"abstract":"Abstract We study the groups 𝐺 with the curious property that there exists an element k ∈ G k\\in G and a function f : G → G f\\colon G\\to G such that f ⁢ ( x ⁢ k ) = x ⁢ f ⁢ ( x ) f(xk)=xf(x) holds for all x ∈ G x\\in G . This property arose from the study of near-rings and input-output automata on groups. We call a group with this property a 𝐽-group. Finite 𝐽-groups must have odd order, and hence are solvable. We prove that every finite nilpotent group of odd order is a 𝐽-group if its nilpotency class 𝑐 satisfies c ⩽ 6 c\\leqslant 6 . If 𝐺 is a finite 𝑝-group, with p > 2 p>2 and p 2 > 2 ⁢ c - 1 p^{2}>2c-1 , then we prove that 𝐺 is 𝐽-group. Finally, if p > 2 p>2 and 𝐺 is a regular 𝑝-group or, more generally, a power-closed one (i.e., in each section and for each m ⩾ 1 m\\geqslant 1 , the subset of p m p^{m} -th powers is a subgroup), then we prove that 𝐺 is a 𝐽-group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The groups 𝐺 satisfying a functional equation 𝑓(𝑥𝑘) = 𝑥𝑓(𝑥) for some 𝑘 ∈ 𝐺\",\"authors\":\"Dominik Bernhardt, Tim Boykett, Alice Devillers, Johannes Flake, S. Glasby\",\"doi\":\"10.1515/jgth-2021-0158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the groups 𝐺 with the curious property that there exists an element k ∈ G k\\\\in G and a function f : G → G f\\\\colon G\\\\to G such that f ⁢ ( x ⁢ k ) = x ⁢ f ⁢ ( x ) f(xk)=xf(x) holds for all x ∈ G x\\\\in G . This property arose from the study of near-rings and input-output automata on groups. We call a group with this property a 𝐽-group. Finite 𝐽-groups must have odd order, and hence are solvable. We prove that every finite nilpotent group of odd order is a 𝐽-group if its nilpotency class 𝑐 satisfies c ⩽ 6 c\\\\leqslant 6 . If 𝐺 is a finite 𝑝-group, with p > 2 p>2 and p 2 > 2 ⁢ c - 1 p^{2}>2c-1 , then we prove that 𝐺 is 𝐽-group. Finally, if p > 2 p>2 and 𝐺 is a regular 𝑝-group or, more generally, a power-closed one (i.e., in each section and for each m ⩾ 1 m\\\\geqslant 1 , the subset of p m p^{m} -th powers is a subgroup), then we prove that 𝐺 is a 𝐽-group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2021-0158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2021-0158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了一类群𝐺,它们具有一个奇异的性质,即存在一个元素k∈G k \in G和一个函数f: G→G f \colon G \to G,使得f(x)减去(x)减去f(x)减去f(xk)减去xf(x)对于所有x∈G x \in G都成立。这一性质源于对群上的近环和输入输出自动机的研究。我们称具有此属性的组为𝐽-group。有限的𝐽-groups必须是奇阶的,因此是可解的。证明了奇数阶幂零群是一个𝐽-group,如果它的幂零类𝑐满足c≤6 c≤\leqslant 6。如果𝐺是有限的𝑝-group,且p>2 p>2且p>2∑c-1 p^{2}>2c-1,则证明𝐺是𝐽-group。最后,如果p>2 p>2并且𝐺是一个规则的𝑝-group,或者更一般地说,是一个幂闭的𝑝-group(即,在每个部分中并且对于每个m小于1 m \geqslant 1, p {m p^m} -幂的子集是一个子群),那么我们证明𝐺是𝐽-group。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The groups 𝐺 satisfying a functional equation 𝑓(𝑥𝑘) = 𝑥𝑓(𝑥) for some 𝑘 ∈ 𝐺
Abstract We study the groups 𝐺 with the curious property that there exists an element k ∈ G k\in G and a function f : G → G f\colon G\to G such that f ⁢ ( x ⁢ k ) = x ⁢ f ⁢ ( x ) f(xk)=xf(x) holds for all x ∈ G x\in G . This property arose from the study of near-rings and input-output automata on groups. We call a group with this property a 𝐽-group. Finite 𝐽-groups must have odd order, and hence are solvable. We prove that every finite nilpotent group of odd order is a 𝐽-group if its nilpotency class 𝑐 satisfies c ⩽ 6 c\leqslant 6 . If 𝐺 is a finite 𝑝-group, with p > 2 p>2 and p 2 > 2 ⁢ c - 1 p^{2}>2c-1 , then we prove that 𝐺 is 𝐽-group. Finally, if p > 2 p>2 and 𝐺 is a regular 𝑝-group or, more generally, a power-closed one (i.e., in each section and for each m ⩾ 1 m\geqslant 1 , the subset of p m p^{m} -th powers is a subgroup), then we prove that 𝐺 is a 𝐽-group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信