Dirk Schlicke, Eva Maria Dorfmann, Ekkehard Fehling, Nguyen Viet Tue
{"title":"钢筋混凝土实际设计中最大裂缝宽度的计算","authors":"Dirk Schlicke, Eva Maria Dorfmann, Ekkehard Fehling, Nguyen Viet Tue","doi":"10.1002/cend.202100004","DOIUrl":null,"url":null,"abstract":"<p>Cracks are an essential characteristic of reinforced concrete (RC) construction. Serviceability and durability, however, require a reasonable limitation of the maximum crack width. The prediction of the maximum crack width of RC, however, is not trivial and has been much debated over the past decades. This article starts with a fundamental comparison of basic procedures for determining the crack width, namely using a mechanical or calibrated model. Following, the behavior of reinforced concrete during crack formation is thoroughly discussed with a focus on the bond stress-slip relation at the reinforcement-concrete interface and with regard to the particular crack stage. Based on these fundamentals, a mechanical calculation model is then proposed for practical calculation of maximum crack width in RC members. The suitability of the proposed model is demonstrated by the comparison of predicted and experimentally obtained maximum crack widths for a database including 460 crack width measurements. It is shown that the current state of knowledge enables a mechanically plausible calculation of the maximum crack width. Although the formulation based on the bond law is not trivial, the calculation model can be prepared with appropriate simplifications in a practical way.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"3 3","pages":"45-61"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cend.202100004","citationCount":"16","resultStr":"{\"title\":\"Calculation of maximum crack width for practical design of reinforced concrete\",\"authors\":\"Dirk Schlicke, Eva Maria Dorfmann, Ekkehard Fehling, Nguyen Viet Tue\",\"doi\":\"10.1002/cend.202100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cracks are an essential characteristic of reinforced concrete (RC) construction. Serviceability and durability, however, require a reasonable limitation of the maximum crack width. The prediction of the maximum crack width of RC, however, is not trivial and has been much debated over the past decades. This article starts with a fundamental comparison of basic procedures for determining the crack width, namely using a mechanical or calibrated model. Following, the behavior of reinforced concrete during crack formation is thoroughly discussed with a focus on the bond stress-slip relation at the reinforcement-concrete interface and with regard to the particular crack stage. Based on these fundamentals, a mechanical calculation model is then proposed for practical calculation of maximum crack width in RC members. The suitability of the proposed model is demonstrated by the comparison of predicted and experimentally obtained maximum crack widths for a database including 460 crack width measurements. It is shown that the current state of knowledge enables a mechanically plausible calculation of the maximum crack width. Although the formulation based on the bond law is not trivial, the calculation model can be prepared with appropriate simplifications in a practical way.</p>\",\"PeriodicalId\":100248,\"journal\":{\"name\":\"Civil Engineering Design\",\"volume\":\"3 3\",\"pages\":\"45-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cend.202100004\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cend.202100004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cend.202100004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calculation of maximum crack width for practical design of reinforced concrete
Cracks are an essential characteristic of reinforced concrete (RC) construction. Serviceability and durability, however, require a reasonable limitation of the maximum crack width. The prediction of the maximum crack width of RC, however, is not trivial and has been much debated over the past decades. This article starts with a fundamental comparison of basic procedures for determining the crack width, namely using a mechanical or calibrated model. Following, the behavior of reinforced concrete during crack formation is thoroughly discussed with a focus on the bond stress-slip relation at the reinforcement-concrete interface and with regard to the particular crack stage. Based on these fundamentals, a mechanical calculation model is then proposed for practical calculation of maximum crack width in RC members. The suitability of the proposed model is demonstrated by the comparison of predicted and experimentally obtained maximum crack widths for a database including 460 crack width measurements. It is shown that the current state of knowledge enables a mechanically plausible calculation of the maximum crack width. Although the formulation based on the bond law is not trivial, the calculation model can be prepared with appropriate simplifications in a practical way.