基于SVM和HOG的面部表情分类

Pub Date : 2020-01-20 DOI:10.31289/jite.v3i2.3182
J. Tanjung, Muhathir Muhathir
{"title":"基于SVM和HOG的面部表情分类","authors":"J. Tanjung, Muhathir Muhathir","doi":"10.31289/jite.v3i2.3182","DOIUrl":null,"url":null,"abstract":"The face is one of the human biometric which is often utilized as an important information of a person. One of the unique information of the face is facial expressions, expressions are information that is given indirectly about an expression of one's feelings. Because facial expressions have a unique pattern for each expression so that the pattern of facial expression will be tested with the computer by utilizing the Histogram of oriented gradient (HOG) descriptor as the extraction of existing features in each expression Face and information acquisition from HOG will be classified by utilizing the Support vector Mechine (SVM) method. The results of facial expression classification by utilizing the Extracaski HOG features reached 76.57% at a value of K = 500 with an average accuracy of 72.57%.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Classification of facial expressions using SVM and HOG\",\"authors\":\"J. Tanjung, Muhathir Muhathir\",\"doi\":\"10.31289/jite.v3i2.3182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The face is one of the human biometric which is often utilized as an important information of a person. One of the unique information of the face is facial expressions, expressions are information that is given indirectly about an expression of one's feelings. Because facial expressions have a unique pattern for each expression so that the pattern of facial expression will be tested with the computer by utilizing the Histogram of oriented gradient (HOG) descriptor as the extraction of existing features in each expression Face and information acquisition from HOG will be classified by utilizing the Support vector Mechine (SVM) method. The results of facial expression classification by utilizing the Extracaski HOG features reached 76.57% at a value of K = 500 with an average accuracy of 72.57%.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31289/jite.v3i2.3182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31289/jite.v3i2.3182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

人脸是人体生物特征的一种,经常被用来作为一个人的重要信息。面部的一个独特信息是面部表情,表情是间接表达一个人的情感的信息。由于面部表情的每个表情都有一个独特的模式,因此将利用面向梯度直方图(Histogram of oriented gradient, HOG)描述符对面部表情模式进行计算机测试,提取每个表情中存在的特征,并利用支持向量机(Support vector machine, SVM)方法对从HOG中获取的信息进行分类。在K = 500时,利用Extracaski HOG特征对面部表情进行分类的准确率达到76.57%,平均准确率为72.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Classification of facial expressions using SVM and HOG
The face is one of the human biometric which is often utilized as an important information of a person. One of the unique information of the face is facial expressions, expressions are information that is given indirectly about an expression of one's feelings. Because facial expressions have a unique pattern for each expression so that the pattern of facial expression will be tested with the computer by utilizing the Histogram of oriented gradient (HOG) descriptor as the extraction of existing features in each expression Face and information acquisition from HOG will be classified by utilizing the Support vector Mechine (SVM) method. The results of facial expression classification by utilizing the Extracaski HOG features reached 76.57% at a value of K = 500 with an average accuracy of 72.57%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信