{"title":"通过利用训练动态来修剪","authors":"Andrei C. Apostol, M. Stol, P. Forré","doi":"10.3233/aic-210127","DOIUrl":null,"url":null,"abstract":"We propose a novel pruning method which uses the oscillations around 0, i.e. sign flips, that a weight has undergone during training in order to determine its saliency. Our method can perform pruning before the network has converged, requires little tuning effort due to having good default values for its hyperparameters, and can directly target the level of sparsity desired by the user. Our experiments, performed on a variety of object classification architectures, show that it is competitive with existing methods and achieves state-of-the-art performance for levels of sparsity of 99.6 % and above for 2 out of 3 of the architectures tested. Moreover, we demonstrate that our method is compatible with quantization, another model compression technique. For reproducibility, we release our code at https://github.com/AndreiXYZ/flipout.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"24 1","pages":"65-85"},"PeriodicalIF":1.4000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pruning by leveraging training dynamics\",\"authors\":\"Andrei C. Apostol, M. Stol, P. Forré\",\"doi\":\"10.3233/aic-210127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel pruning method which uses the oscillations around 0, i.e. sign flips, that a weight has undergone during training in order to determine its saliency. Our method can perform pruning before the network has converged, requires little tuning effort due to having good default values for its hyperparameters, and can directly target the level of sparsity desired by the user. Our experiments, performed on a variety of object classification architectures, show that it is competitive with existing methods and achieves state-of-the-art performance for levels of sparsity of 99.6 % and above for 2 out of 3 of the architectures tested. Moreover, we demonstrate that our method is compatible with quantization, another model compression technique. For reproducibility, we release our code at https://github.com/AndreiXYZ/flipout.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"24 1\",\"pages\":\"65-85\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-210127\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-210127","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
We propose a novel pruning method which uses the oscillations around 0, i.e. sign flips, that a weight has undergone during training in order to determine its saliency. Our method can perform pruning before the network has converged, requires little tuning effort due to having good default values for its hyperparameters, and can directly target the level of sparsity desired by the user. Our experiments, performed on a variety of object classification architectures, show that it is competitive with existing methods and achieves state-of-the-art performance for levels of sparsity of 99.6 % and above for 2 out of 3 of the architectures tested. Moreover, we demonstrate that our method is compatible with quantization, another model compression technique. For reproducibility, we release our code at https://github.com/AndreiXYZ/flipout.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.