双仿射布鲁哈特目封面的分类

IF 0.7 4区 数学 Q2 MATHEMATICS
Amanda Welch
{"title":"双仿射布鲁哈特目封面的分类","authors":"Amanda Welch","doi":"10.37236/10745","DOIUrl":null,"url":null,"abstract":"We classify cocovers of a given element of the double affine Weyl semigroup $W_{\\mathcal{T}}$ with respect to the Bruhat order, specifically when $W_{\\mathcal{T}}$ is associated to a finite root system that is irreducible and simply laced. We do so by introducing a graphical representation of the length difference set defined by Muthiah and Orr and identifying the cocovering relations with the corners of those graphs. This new method allows us to prove that there are finitely many cocovers of each $x \\in W_{\\mathcal{T}}$. Further, we show that the Bruhat intervals in the double affine Bruhat order are finite.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"21 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Cocovers in the Double Affine Bruhat Order\",\"authors\":\"Amanda Welch\",\"doi\":\"10.37236/10745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify cocovers of a given element of the double affine Weyl semigroup $W_{\\\\mathcal{T}}$ with respect to the Bruhat order, specifically when $W_{\\\\mathcal{T}}$ is associated to a finite root system that is irreducible and simply laced. We do so by introducing a graphical representation of the length difference set defined by Muthiah and Orr and identifying the cocovering relations with the corners of those graphs. This new method allows us to prove that there are finitely many cocovers of each $x \\\\in W_{\\\\mathcal{T}}$. Further, we show that the Bruhat intervals in the double affine Bruhat order are finite.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/10745\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10745","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们对双重仿射Weyl半群$W_{\mathcal{T}}$的给定元素的上盖根据Bruhat阶进行分类,特别是当$W_{\mathcal{T}}$与一个不可约的简系有限根系统相关联时。我们通过引入Muthiah和Orr定义的长度差集的图形表示,并识别与这些图的角的覆盖关系来实现这一点。这个新方法允许我们证明W_{\mathcal{T}}$中的每个$x \有有限多个复盖。进一步证明了双仿射Bruhat阶的Bruhat区间是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Cocovers in the Double Affine Bruhat Order
We classify cocovers of a given element of the double affine Weyl semigroup $W_{\mathcal{T}}$ with respect to the Bruhat order, specifically when $W_{\mathcal{T}}$ is associated to a finite root system that is irreducible and simply laced. We do so by introducing a graphical representation of the length difference set defined by Muthiah and Orr and identifying the cocovering relations with the corners of those graphs. This new method allows us to prove that there are finitely many cocovers of each $x \in W_{\mathcal{T}}$. Further, we show that the Bruhat intervals in the double affine Bruhat order are finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信