具有多点和积分-多条带边界条件的hilfer型非线性比例分数阶微分方程耦合系统

S. Ntouyas, Bashir Ahmad, J. Tariboon
{"title":"具有多点和积分-多条带边界条件的hilfer型非线性比例分数阶微分方程耦合系统","authors":"S. Ntouyas, Bashir Ahmad, J. Tariboon","doi":"10.3390/foundations3020020","DOIUrl":null,"url":null,"abstract":"In this paper, we study a coupled system of nonlinear proportional fractional differential equations of the Hilfer-type with a new kind of multi-point and integro-multi-strip boundary conditions. Results on the existence and uniqueness of the solutions are achieved by using Banach’s contraction principle, the Leray–Schauder alternative and the well-known fixed-point theorem of Krasnosel’skiĭ. Finally, the main results are illustrated by constructing numerical examples.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coupled Systems of Nonlinear Proportional Fractional Differential Equations of the Hilfer-Type with Multi-Point and Integro-Multi-Strip Boundary Conditions\",\"authors\":\"S. Ntouyas, Bashir Ahmad, J. Tariboon\",\"doi\":\"10.3390/foundations3020020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a coupled system of nonlinear proportional fractional differential equations of the Hilfer-type with a new kind of multi-point and integro-multi-strip boundary conditions. Results on the existence and uniqueness of the solutions are achieved by using Banach’s contraction principle, the Leray–Schauder alternative and the well-known fixed-point theorem of Krasnosel’skiĭ. Finally, the main results are illustrated by constructing numerical examples.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations3020020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations3020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一类具有多点积分多条形边界条件的hilfer型非线性比例分数阶微分方程耦合系统。利用Banach的收缩原理、Leray-Schauder替代和Krasnosel的不动点定理,得到了解的存在唯一性。最后,通过构造数值算例对主要结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupled Systems of Nonlinear Proportional Fractional Differential Equations of the Hilfer-Type with Multi-Point and Integro-Multi-Strip Boundary Conditions
In this paper, we study a coupled system of nonlinear proportional fractional differential equations of the Hilfer-type with a new kind of multi-point and integro-multi-strip boundary conditions. Results on the existence and uniqueness of the solutions are achieved by using Banach’s contraction principle, the Leray–Schauder alternative and the well-known fixed-point theorem of Krasnosel’skiĭ. Finally, the main results are illustrated by constructing numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信