基于bjt的无电容DRAM单元缩放限制的变化感知研究

M. H. Cho, W. Kwon, N. Xu, T. K. Liu
{"title":"基于bjt的无电容DRAM单元缩放限制的变化感知研究","authors":"M. H. Cho, W. Kwon, N. Xu, T. K. Liu","doi":"10.1109/SNW.2012.6243319","DOIUrl":null,"url":null,"abstract":"The scaling limit of the BJT-based capacitorless DRAM cell is investigated via 3-D process and device simulations, accounting for systematic and random sources of variation. The cell design and operating voltages are optimized at each gate length, following a constant electric field methodology. Retention time decreases with gate length, so that the scaling limit is expected to be 16.5 nm or 13 nm, depending on the application.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"48 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation-aware study of BJT-based capacitorless DRAM cell scaling limit\",\"authors\":\"M. H. Cho, W. Kwon, N. Xu, T. K. Liu\",\"doi\":\"10.1109/SNW.2012.6243319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scaling limit of the BJT-based capacitorless DRAM cell is investigated via 3-D process and device simulations, accounting for systematic and random sources of variation. The cell design and operating voltages are optimized at each gate length, following a constant electric field methodology. Retention time decreases with gate length, so that the scaling limit is expected to be 16.5 nm or 13 nm, depending on the application.\",\"PeriodicalId\":6402,\"journal\":{\"name\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"48 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNW.2012.6243319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到系统和随机的变化源,通过三维工艺和器件模拟研究了基于bjt的无电容DRAM单元的缩放极限。电池设计和工作电压在每个栅极长度进行优化,遵循恒定电场方法。保留时间随着栅极长度的增加而减少,因此缩放极限预计为16.5 nm或13 nm,具体取决于应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variation-aware study of BJT-based capacitorless DRAM cell scaling limit
The scaling limit of the BJT-based capacitorless DRAM cell is investigated via 3-D process and device simulations, accounting for systematic and random sources of variation. The cell design and operating voltages are optimized at each gate length, following a constant electric field methodology. Retention time decreases with gate length, so that the scaling limit is expected to be 16.5 nm or 13 nm, depending on the application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信