一种用于模式分类的cmos记忆自学习神经网络

M. Payvand, Justin Rofeh, A. Sodhi, L. Theogarajan
{"title":"一种用于模式分类的cmos记忆自学习神经网络","authors":"M. Payvand, Justin Rofeh, A. Sodhi, L. Theogarajan","doi":"10.1145/2770287.2770311","DOIUrl":null,"url":null,"abstract":"Memristors have proven to be powerful analogs of neural synapses. While there have been some efforts to exploit this feature, the intrinsic analog nature of the memristive element has not been fully utilized. This paper presents a hardware-efficient neuromorphic CMOS-memristor pattern classifier. The system takes advantage of the memristor as a true analog memory, and Spike Timing Dependent Plasticity (STDP) is utilized to program memristors in a recurrent neural network. System co-simulations are performed in Verilog-AMS with CMOS devices and previously published memristive models. The results indicate the power of this approach in pattern classification using unsupervised learning.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"108 1","pages":"92-97"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A CMOS-memristive self-learning neural network for pattern classification applications\",\"authors\":\"M. Payvand, Justin Rofeh, A. Sodhi, L. Theogarajan\",\"doi\":\"10.1145/2770287.2770311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristors have proven to be powerful analogs of neural synapses. While there have been some efforts to exploit this feature, the intrinsic analog nature of the memristive element has not been fully utilized. This paper presents a hardware-efficient neuromorphic CMOS-memristor pattern classifier. The system takes advantage of the memristor as a true analog memory, and Spike Timing Dependent Plasticity (STDP) is utilized to program memristors in a recurrent neural network. System co-simulations are performed in Verilog-AMS with CMOS devices and previously published memristive models. The results indicate the power of this approach in pattern classification using unsupervised learning.\",\"PeriodicalId\":6519,\"journal\":{\"name\":\"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"108 1\",\"pages\":\"92-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2770287.2770311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2770287.2770311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

记忆电阻器已被证明是神经突触的强大类似物。虽然已经有一些努力来利用这一特性,但记忆元件固有的模拟性质尚未得到充分利用。本文提出了一种硬件高效的神经形态cmos记忆电阻模式分类器。该系统利用忆阻器作为真正的模拟存储器,并利用脉冲时序相关的可塑性(STDP)对递归神经网络中的忆阻器进行编程。系统联合仿真在Verilog-AMS中使用CMOS器件和先前发表的记忆模型进行。结果表明了该方法在使用无监督学习的模式分类中的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CMOS-memristive self-learning neural network for pattern classification applications
Memristors have proven to be powerful analogs of neural synapses. While there have been some efforts to exploit this feature, the intrinsic analog nature of the memristive element has not been fully utilized. This paper presents a hardware-efficient neuromorphic CMOS-memristor pattern classifier. The system takes advantage of the memristor as a true analog memory, and Spike Timing Dependent Plasticity (STDP) is utilized to program memristors in a recurrent neural network. System co-simulations are performed in Verilog-AMS with CMOS devices and previously published memristive models. The results indicate the power of this approach in pattern classification using unsupervised learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信