具有一般压力律的多维可压缩粘弹性流的全局强解

IF 0.5 4区 数学 Q3 MATHEMATICS
Yu Liu, Song Meng, Jiayan Wu, Ting Zhang
{"title":"具有一般压力律的多维可压缩粘弹性流的全局强解","authors":"Yu Liu, Song Meng, Jiayan Wu, Ting Zhang","doi":"10.1063/5.0158057","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly focus on the compressible viscoelastic flows of Oldroyd type with the general pressure law, with one of the non-Newtonian fluids exhibiting the elastic behavior. For the viscoelastic flows of Oldroyd type with the general pressure law, P′(ρ̄)+α>0, with α > 0 being the elasticity coefficient of the fluid, we prove the global existence and uniqueness of the strong solution in the critical Besov spaces when the initial data u⃗0 and the low frequency part of ρ0, τ0 are small enough compared to the viscosity coefficients. In particular, when the viscosity is large, the part of the initial data can be large. The proof we display here does not need any compatible conditions. In addition, we also obtain the optimal decay rates of the solution in the Besov spaces.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"94 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global strong solutions for the multi-dimensional compressible viscoelastic flows with general pressure law\",\"authors\":\"Yu Liu, Song Meng, Jiayan Wu, Ting Zhang\",\"doi\":\"10.1063/5.0158057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we mainly focus on the compressible viscoelastic flows of Oldroyd type with the general pressure law, with one of the non-Newtonian fluids exhibiting the elastic behavior. For the viscoelastic flows of Oldroyd type with the general pressure law, P′(ρ̄)+α>0, with α > 0 being the elasticity coefficient of the fluid, we prove the global existence and uniqueness of the strong solution in the critical Besov spaces when the initial data u⃗0 and the low frequency part of ρ0, τ0 are small enough compared to the viscosity coefficients. In particular, when the viscosity is large, the part of the initial data can be large. The proof we display here does not need any compatible conditions. In addition, we also obtain the optimal decay rates of the solution in the Besov spaces.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0158057\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0158057","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究具有一般压力定律的Oldroyd型可压缩粘弹性流动,其中一种非牛顿流体表现出弹性行为。对于广义压力律P′(ρ′)+α>0, α>0为流体弹性系数的Oldroyd型粘弹性流,我们证明了初始数据u′(ρ′)和ρ′,τ0的低频部分相对于黏性系数足够小时,临界Besov空间强解的整体存在唯一性。特别是当粘度较大时,初始数据的部分可以较大。我们在这里展示的证明不需要任何兼容条件。此外,我们还得到了解在Besov空间中的最优衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global strong solutions for the multi-dimensional compressible viscoelastic flows with general pressure law
In this paper, we mainly focus on the compressible viscoelastic flows of Oldroyd type with the general pressure law, with one of the non-Newtonian fluids exhibiting the elastic behavior. For the viscoelastic flows of Oldroyd type with the general pressure law, P′(ρ̄)+α>0, with α > 0 being the elasticity coefficient of the fluid, we prove the global existence and uniqueness of the strong solution in the critical Besov spaces when the initial data u⃗0 and the low frequency part of ρ0, τ0 are small enough compared to the viscosity coefficients. In particular, when the viscosity is large, the part of the initial data can be large. The proof we display here does not need any compatible conditions. In addition, we also obtain the optimal decay rates of the solution in the Besov spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信