基于差分进化算法的球形磁场产生线圈优化设计方法

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Xu, Jian Ge, Hong Yu, Min Xiao
{"title":"基于差分进化算法的球形磁场产生线圈优化设计方法","authors":"Wei Xu, Jian Ge, Hong Yu, Min Xiao","doi":"10.20965/jaciii.2023.p0490","DOIUrl":null,"url":null,"abstract":"In a coil magnetometer, the size and uniformity of the bias magnetic field generated by the Helmholtz coil directly determine the accuracy of the solution of the geomagnetic direction. The design of traditional spherical coils relies heavily on the manual experience or mathematical derivation, making it difficult to obtain optimal parameters or requiring larger spherical coils. To address the problem, first, a coaxial symmetrical spherical coil model that improves space utilization was established. Second, an optimal design method for the spherical magnetic field generation coil based on a differential evolution algorithm was proposed. Third, the optimal bias magnetic field was obtained without increasing the volume of the coil. The verification results showed that the magnetic non-uniformity and magnetic gradient of the bias field generated by the optimized coil were reduced by 63.2% and 82.8%, respectively.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"24 1","pages":"490-495"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization Design Method of Spherical Magnetic Field Generation Coil Based on Differential Evolution Algorithm\",\"authors\":\"Wei Xu, Jian Ge, Hong Yu, Min Xiao\",\"doi\":\"10.20965/jaciii.2023.p0490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a coil magnetometer, the size and uniformity of the bias magnetic field generated by the Helmholtz coil directly determine the accuracy of the solution of the geomagnetic direction. The design of traditional spherical coils relies heavily on the manual experience or mathematical derivation, making it difficult to obtain optimal parameters or requiring larger spherical coils. To address the problem, first, a coaxial symmetrical spherical coil model that improves space utilization was established. Second, an optimal design method for the spherical magnetic field generation coil based on a differential evolution algorithm was proposed. Third, the optimal bias magnetic field was obtained without increasing the volume of the coil. The verification results showed that the magnetic non-uniformity and magnetic gradient of the bias field generated by the optimized coil were reduced by 63.2% and 82.8%, respectively.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"24 1\",\"pages\":\"490-495\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在线圈式磁强计中,亥姆霍兹线圈产生的偏置磁场的大小和均匀性直接决定了地磁方向求解的精度。传统的球形线圈设计严重依赖于人工经验或数学推导,难以获得最优参数或需要更大的球形线圈。为了解决这一问题,首先建立了提高空间利用率的同轴对称球形线圈模型;其次,提出了一种基于差分进化算法的球形磁场产生线圈优化设计方法。在不增加线圈体积的情况下,获得了最优的偏置磁场。验证结果表明,优化线圈产生的偏置磁场的磁不均匀性和磁梯度分别降低了63.2%和82.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization Design Method of Spherical Magnetic Field Generation Coil Based on Differential Evolution Algorithm
In a coil magnetometer, the size and uniformity of the bias magnetic field generated by the Helmholtz coil directly determine the accuracy of the solution of the geomagnetic direction. The design of traditional spherical coils relies heavily on the manual experience or mathematical derivation, making it difficult to obtain optimal parameters or requiring larger spherical coils. To address the problem, first, a coaxial symmetrical spherical coil model that improves space utilization was established. Second, an optimal design method for the spherical magnetic field generation coil based on a differential evolution algorithm was proposed. Third, the optimal bias magnetic field was obtained without increasing the volume of the coil. The verification results showed that the magnetic non-uniformity and magnetic gradient of the bias field generated by the optimized coil were reduced by 63.2% and 82.8%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信