Murali-Lakshmanan-Chua电路变体的特征值研究

G.Sivaganesh M.Daniel Sweetlin and B.V.Bhuvaneswari
{"title":"Murali-Lakshmanan-Chua电路变体的特征值研究","authors":"G.Sivaganesh M.Daniel Sweetlin and B.V.Bhuvaneswari","doi":"10.19071/RRST.2015.V7.2888","DOIUrl":null,"url":null,"abstract":"In this paper, the eigenvalues of a simple second-order non autonomous chaotic circuit namely, the variant of the Murali-Lakshmanan-Chua’s (MLCV) circuit is studied.  The dynamical behaviour of the circuit is obtained by means of a study on the Eigen values of the linearized Jacobian of the nonlinear differential equations.  The trajectories of the Eigen values as functions of the dynamic parallel loss conductance explaining the supercritical hopf bifurcation exhibited by the autonomous system is presented.","PeriodicalId":20870,"journal":{"name":"Recent Research in Science and Technology","volume":"24 1","pages":"10-13"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Eigenvalue Study on the Variant of Murali-Lakshmanan-Chua Circuit\",\"authors\":\"G.Sivaganesh M.Daniel Sweetlin and B.V.Bhuvaneswari\",\"doi\":\"10.19071/RRST.2015.V7.2888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the eigenvalues of a simple second-order non autonomous chaotic circuit namely, the variant of the Murali-Lakshmanan-Chua’s (MLCV) circuit is studied.  The dynamical behaviour of the circuit is obtained by means of a study on the Eigen values of the linearized Jacobian of the nonlinear differential equations.  The trajectories of the Eigen values as functions of the dynamic parallel loss conductance explaining the supercritical hopf bifurcation exhibited by the autonomous system is presented.\",\"PeriodicalId\":20870,\"journal\":{\"name\":\"Recent Research in Science and Technology\",\"volume\":\"24 1\",\"pages\":\"10-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Research in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19071/RRST.2015.V7.2888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Research in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19071/RRST.2015.V7.2888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一类简单二阶非自治混沌电路的特征值,即变型的Murali-Lakshmanan-Chua (MLCV)电路。通过研究非线性微分方程的线性化雅可比矩阵的特征值,得到了电路的动态特性。给出了本征值作为动态平行损耗电导函数的轨迹,解释了自治系统表现出的超临界hopf分岔现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Eigenvalue Study on the Variant of Murali-Lakshmanan-Chua Circuit
In this paper, the eigenvalues of a simple second-order non autonomous chaotic circuit namely, the variant of the Murali-Lakshmanan-Chua’s (MLCV) circuit is studied.  The dynamical behaviour of the circuit is obtained by means of a study on the Eigen values of the linearized Jacobian of the nonlinear differential equations.  The trajectories of the Eigen values as functions of the dynamic parallel loss conductance explaining the supercritical hopf bifurcation exhibited by the autonomous system is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信