{"title":"利用经验模态分解方法研究白噪声的特性","authors":"Zhaohua Wu, N. Huang","doi":"10.1098/rspa.2003.1221","DOIUrl":null,"url":null,"abstract":"Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter, the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area on a semi–logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy–density function is chi–squared distributed. Furthermore, we derive the energy–density spread function of the IMF components. Through these results, we establish a method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data are used to illustrate the methodology developed here.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"27 1","pages":"1597 - 1611"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1639","resultStr":"{\"title\":\"A study of the characteristics of white noise using the empirical mode decomposition method\",\"authors\":\"Zhaohua Wu, N. Huang\",\"doi\":\"10.1098/rspa.2003.1221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter, the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area on a semi–logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy–density function is chi–squared distributed. Furthermore, we derive the energy–density spread function of the IMF components. Through these results, we establish a method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data are used to illustrate the methodology developed here.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"27 1\",\"pages\":\"1597 - 1611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1639\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2003.1221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2003.1221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study of the characteristics of white noise using the empirical mode decomposition method
Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter, the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area on a semi–logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy–density function is chi–squared distributed. Furthermore, we derive the energy–density spread function of the IMF components. Through these results, we establish a method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data are used to illustrate the methodology developed here.
期刊介绍:
Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.