{"title":"微观生命的统计断层扫描","authors":"Aviad Levis, Y. Schechner, R. Talmon","doi":"10.1109/CVPR.2018.00671","DOIUrl":null,"url":null,"abstract":"We achieve tomography of 3D volumetric natural objects, where each projected 2D image corresponds to a different specimen. Each specimen has unknown random 3D orientation, location, and scale. This imaging scenario is relevant to microscopic and mesoscopic organisms, aerosols and hydrosols viewed naturally by a microscope. In-class scale variation inhibits prior single-particle reconstruction methods. We thus generalize tomographic recovery to account for all degrees of freedom of a similarity transformation. This enables geometric self-calibration in imaging of transparent objects. We make the computational load manageable and reach good quality reconstruction in a short time. This enables extraction of statistics that are important for a scientific study of specimen populations, specifically size distribution parameters. We apply the method to study of plankton.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"86 1","pages":"6411-6420"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Statistical Tomography of Microscopic Life\",\"authors\":\"Aviad Levis, Y. Schechner, R. Talmon\",\"doi\":\"10.1109/CVPR.2018.00671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We achieve tomography of 3D volumetric natural objects, where each projected 2D image corresponds to a different specimen. Each specimen has unknown random 3D orientation, location, and scale. This imaging scenario is relevant to microscopic and mesoscopic organisms, aerosols and hydrosols viewed naturally by a microscope. In-class scale variation inhibits prior single-particle reconstruction methods. We thus generalize tomographic recovery to account for all degrees of freedom of a similarity transformation. This enables geometric self-calibration in imaging of transparent objects. We make the computational load manageable and reach good quality reconstruction in a short time. This enables extraction of statistics that are important for a scientific study of specimen populations, specifically size distribution parameters. We apply the method to study of plankton.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"86 1\",\"pages\":\"6411-6420\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We achieve tomography of 3D volumetric natural objects, where each projected 2D image corresponds to a different specimen. Each specimen has unknown random 3D orientation, location, and scale. This imaging scenario is relevant to microscopic and mesoscopic organisms, aerosols and hydrosols viewed naturally by a microscope. In-class scale variation inhibits prior single-particle reconstruction methods. We thus generalize tomographic recovery to account for all degrees of freedom of a similarity transformation. This enables geometric self-calibration in imaging of transparent objects. We make the computational load manageable and reach good quality reconstruction in a short time. This enables extraction of statistics that are important for a scientific study of specimen populations, specifically size distribution parameters. We apply the method to study of plankton.