Eric Kwiatkowski, C. Rodenbeck, T. Barton, Z. Popovic
{"title":"用于x波段无线电力传输的功率组合整流天线阵列","authors":"Eric Kwiatkowski, C. Rodenbeck, T. Barton, Z. Popovic","doi":"10.1109/IMS30576.2020.9223970","DOIUrl":null,"url":null,"abstract":"This work presents an RF power-combined rectenna array operating at 10 GHz and designed for low incident power densities ranging from 0.1-100 µW/cm2. The array consists of unit-cell sequentially-fed four-element patch antenna subarrays designed to receive incident waves with circular polarization. The incident power is converted to dc using a single-ended Schottky diode rectifier. The rectifier is first characterized over input power and dc load individually and with a single sub-array. A 4-to-1 RF power-combining network is designed to further improve RF-to-dc conversion efficiency and output power at the lower-bound power density of 0.1 µW/cm2. A three-layer PCB with off-the-shelf components enables straightforward scaling to larger apertures.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"52 1","pages":"992-995"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Power-Combined Rectenna Array for X-Band Wireless Power Transfer\",\"authors\":\"Eric Kwiatkowski, C. Rodenbeck, T. Barton, Z. Popovic\",\"doi\":\"10.1109/IMS30576.2020.9223970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an RF power-combined rectenna array operating at 10 GHz and designed for low incident power densities ranging from 0.1-100 µW/cm2. The array consists of unit-cell sequentially-fed four-element patch antenna subarrays designed to receive incident waves with circular polarization. The incident power is converted to dc using a single-ended Schottky diode rectifier. The rectifier is first characterized over input power and dc load individually and with a single sub-array. A 4-to-1 RF power-combining network is designed to further improve RF-to-dc conversion efficiency and output power at the lower-bound power density of 0.1 µW/cm2. A three-layer PCB with off-the-shelf components enables straightforward scaling to larger apertures.\",\"PeriodicalId\":6784,\"journal\":{\"name\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"volume\":\"52 1\",\"pages\":\"992-995\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMS30576.2020.9223970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMS30576.2020.9223970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-Combined Rectenna Array for X-Band Wireless Power Transfer
This work presents an RF power-combined rectenna array operating at 10 GHz and designed for low incident power densities ranging from 0.1-100 µW/cm2. The array consists of unit-cell sequentially-fed four-element patch antenna subarrays designed to receive incident waves with circular polarization. The incident power is converted to dc using a single-ended Schottky diode rectifier. The rectifier is first characterized over input power and dc load individually and with a single sub-array. A 4-to-1 RF power-combining network is designed to further improve RF-to-dc conversion efficiency and output power at the lower-bound power density of 0.1 µW/cm2. A three-layer PCB with off-the-shelf components enables straightforward scaling to larger apertures.