{"title":"无细胞合成生物学:为生物分子工程编排机器","authors":"Xiaomei Lin , Ting Wang , Yuan Lu","doi":"10.1016/j.biotno.2022.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Due to inherent complexity, incompatibility, and variability in living cell systems, biomolecular engineering faces significant obstacles. To find novel solutions to these issues, researchers have turned to cell-free synthetic biology (CFSB), a relatively young field of study. Biochemical processes can be triggered <em>in vitro</em> through cell-free synthesis, providing a wider range of options for biomolecular engineering. Here, we provide a survey of recent advances in cell-free synthesis. These have sparked innovative studies in areas including the synthesis of complex proteins, incorporation of unnatural amino acids, precise post-translational modifications, high-throughput workflow, and synthetic biomolecular network regulation. CFSB has transformed the studies of biological machinery in a profound and practical way for versatile biomolecular engineering applications.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 97-101"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000174/pdfft?md5=7824c6124cf6e4fd4a94be4f33fa47d5&pid=1-s2.0-S2665906922000174-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cell-free synthetic biology: Orchestrating the machinery for biomolecular engineering\",\"authors\":\"Xiaomei Lin , Ting Wang , Yuan Lu\",\"doi\":\"10.1016/j.biotno.2022.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to inherent complexity, incompatibility, and variability in living cell systems, biomolecular engineering faces significant obstacles. To find novel solutions to these issues, researchers have turned to cell-free synthetic biology (CFSB), a relatively young field of study. Biochemical processes can be triggered <em>in vitro</em> through cell-free synthesis, providing a wider range of options for biomolecular engineering. Here, we provide a survey of recent advances in cell-free synthesis. These have sparked innovative studies in areas including the synthesis of complex proteins, incorporation of unnatural amino acids, precise post-translational modifications, high-throughput workflow, and synthetic biomolecular network regulation. CFSB has transformed the studies of biological machinery in a profound and practical way for versatile biomolecular engineering applications.</p></div>\",\"PeriodicalId\":100186,\"journal\":{\"name\":\"Biotechnology Notes\",\"volume\":\"3 \",\"pages\":\"Pages 97-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665906922000174/pdfft?md5=7824c6124cf6e4fd4a94be4f33fa47d5&pid=1-s2.0-S2665906922000174-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665906922000174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906922000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cell-free synthetic biology: Orchestrating the machinery for biomolecular engineering
Due to inherent complexity, incompatibility, and variability in living cell systems, biomolecular engineering faces significant obstacles. To find novel solutions to these issues, researchers have turned to cell-free synthetic biology (CFSB), a relatively young field of study. Biochemical processes can be triggered in vitro through cell-free synthesis, providing a wider range of options for biomolecular engineering. Here, we provide a survey of recent advances in cell-free synthesis. These have sparked innovative studies in areas including the synthesis of complex proteins, incorporation of unnatural amino acids, precise post-translational modifications, high-throughput workflow, and synthetic biomolecular network regulation. CFSB has transformed the studies of biological machinery in a profound and practical way for versatile biomolecular engineering applications.