{"title":"混沌流动中的化学反应","authors":"F.J. Muzzio, M. Liu","doi":"10.1016/S0923-0467(96)03108-9","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical reactions in time-periodic 2D chaotic flows are examined by solving numerically the convection-diffusion-reaction equation. Three flow conditions are considered: a predominantly regular system, a predominantly chaotic system with a few regular islands, and a globally chaotic system devoid of noticeable islands. Chaotic mixing has a strong impact on systems undergoing a single bimolecular reaction A + B → C. Maximum concentration of C occurs in well-mixed chaotic regions; in comparison, little reaction takes place inside poorly mixed non-chaotic islands. Chaotic mixing also has a significant impact on competitive-consecutive reactions A + B → P, B + P → W. The relative amounts of P and W generated by the reactions are strongly affected by the presence of islands. While the desired product P predominates in chaotic regions, most of the waste W is generated inside islands.</p></div>","PeriodicalId":101226,"journal":{"name":"The Chemical Engineering Journal and the Biochemical Engineering Journal","volume":"64 1","pages":"Pages 117-127"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0923-0467(96)03108-9","citationCount":"43","resultStr":"{\"title\":\"Chemical reactions in chaotic flows\",\"authors\":\"F.J. Muzzio, M. Liu\",\"doi\":\"10.1016/S0923-0467(96)03108-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemical reactions in time-periodic 2D chaotic flows are examined by solving numerically the convection-diffusion-reaction equation. Three flow conditions are considered: a predominantly regular system, a predominantly chaotic system with a few regular islands, and a globally chaotic system devoid of noticeable islands. Chaotic mixing has a strong impact on systems undergoing a single bimolecular reaction A + B → C. Maximum concentration of C occurs in well-mixed chaotic regions; in comparison, little reaction takes place inside poorly mixed non-chaotic islands. Chaotic mixing also has a significant impact on competitive-consecutive reactions A + B → P, B + P → W. The relative amounts of P and W generated by the reactions are strongly affected by the presence of islands. While the desired product P predominates in chaotic regions, most of the waste W is generated inside islands.</p></div>\",\"PeriodicalId\":101226,\"journal\":{\"name\":\"The Chemical Engineering Journal and the Biochemical Engineering Journal\",\"volume\":\"64 1\",\"pages\":\"Pages 117-127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0923-0467(96)03108-9\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Chemical Engineering Journal and the Biochemical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923046796031089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Chemical Engineering Journal and the Biochemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923046796031089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemical reactions in time-periodic 2D chaotic flows are examined by solving numerically the convection-diffusion-reaction equation. Three flow conditions are considered: a predominantly regular system, a predominantly chaotic system with a few regular islands, and a globally chaotic system devoid of noticeable islands. Chaotic mixing has a strong impact on systems undergoing a single bimolecular reaction A + B → C. Maximum concentration of C occurs in well-mixed chaotic regions; in comparison, little reaction takes place inside poorly mixed non-chaotic islands. Chaotic mixing also has a significant impact on competitive-consecutive reactions A + B → P, B + P → W. The relative amounts of P and W generated by the reactions are strongly affected by the presence of islands. While the desired product P predominates in chaotic regions, most of the waste W is generated inside islands.